Cambridge, MA, United States

Idera Pharmaceuticals

www.iderapharma.com
Cambridge, MA, United States

Time filter

Source Type

Patent
Idera Pharmaceuticals | Date: 2016-11-02

The present invention is directed to compounds, compositions, and methods useful for modulating NLRP3 mRNA or protein expression using gene silencing compounds comprising two or more single stranded antisense oligonucleotides that are linked through their 5-ends to allow the presence of two or more accessible 3-ends.


The invention provides novel immune regulatory oligonucleotides (IRO) as antagonist of TLRs and methods of use thereof. These IROs have unique sequences that inhibit or suppress TLR-mediated signaling in response to a TLR ligand or TLR agonist. The methods may have use in the prevention and treatment of cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, infectious disease, skin disorders, allergy, asthma or a disease caused by a pathogen.


The invention provides the use of TLR inhibitors or a pharmaceutically acceptable derivative thereof, optionally in combination with one or more lipid lowering composition, cholesterol lowering composition, diuretics, non-steroidal anti-inflammatory compounds (NSAIDs), antibodies, antisense oligonucleotides, TLR agonists, TLR antagonists, peptides, proteins or gene therapy vectors or combinations thereof for the prevention or treatment of hypercholesterolemia and/or hyperlipidemia and/or diseases associated therewith.


Patent
Idera Pharmaceuticals | Date: 2016-02-11

The invention provides antagonist of TLR9 and methods of use thereof. These compounds inhibit or suppress TLR9-mediated signaling. The methods may have use in the prevention and treatment of diseases or disorders mediated by TLR9.


The invention provides immune regulatory oligonucleotides (IRO) as antagonist of TLRs and methods of use thereof. These IROs have unique sequences that inhibit TLR-mediated signaling in response to a TLR ligand or TLR agonist. The methods may have use in the prevention and treatment of cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, infectious disease, skin disorders, allergy, asthma or a disease caused by a pathogen.


The invention provides novel immune regulatory oligonucleotides (IRO) as antagonist of TLRs and methods of use thereof. These IROs have unique sequences that inhibit or suppress TLR-mediated signaling in response to a TLR ligand or TLR agonist. The methods may have use in the prevention and treatment of cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, infectious disease, skin disorders, allergy, asthma or a disease caused by a pathogen.


Patent
Idera Pharmaceuticals | Date: 2015-01-07

The invention relates to synthetic chemical compositions that are useful for modulation of Toll-Like Receptor (TLR)-mediated immune responses. In particular, the invention relates to agonists of Toll-Like Receptor 9 (TLR9) that generate unique cytokine and chemokine profiles.


Patent
Idera Pharmaceuticals | Date: 2016-07-07

The present invention is directed to compounds, compositions, and methods useful for modulating DUX4 mRNA or protein expression using gene silencing compounds comprising two or more single stranded antisense oligonucleotides that are linked through their 5-ends to allow the presence of two or more accessible 3-ends.


The invention provides immune regulatory oligonucleotides (IRO) as antagonist of TLRs and methods of use thereof. These IROs have unique sequences that inhibit TLR-mediated signaling in response to a TLR ligand or TLR agonist. The methods may have use in the prevention and treatment of cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, infectious disease, skin disorders, allergy, asthma or a disease caused by a pathogen.


Patent
Idera Pharmaceuticals | Date: 2016-02-25

The present invention is directed to compounds, compositions, and methods useful for modulating PD1, PDL1, IDO1, LAG3, TIM3, CTLA4, IDO2, CEACAM1, OX40, and/or OX40L mRNA or protein expression using gene silencing compounds comprising two or more single stranded antisense oligonucleotides that are linked through their 5-ends to allow the presence of two or more accessible 3-ends.

Loading Idera Pharmaceuticals collaborators
Loading Idera Pharmaceuticals collaborators