Time filter

Source Type

Bourgeon S.,Norwegian Institute for Nature Research | Leat E.H.K.,University of Glasgow | Magnusdottir E.,Iceland Institute of Natural History | Fisk A.T.,University of Windsor | And 9 more authors.
Environmental Research | Year: 2012

Persistent organic pollutants (POPs) have been shown to cause adverse effects on a number of biomarkers of health in birds. POPs may impair immune function and alter the stress response, defined as a suite of behavioral and physiological responses to environmental perturbations. Recent studies have also proposed that POPs can induce oxidative stress. Nevertheless, there is a lack of studies simultaneously assessing the potential damaging effects of POPs on the latter biomarkers. In this study, we examined the contribution of legacy (organochlorines; (OCs)) and emerging (flame retardants; PBDEs) POPs to individual variations in stress levels (feather corticosterone), humoral immunity (plasma immunoglobulin Y levels) and oxidative stress occurring in three breeding colonies of a top predator seabird, the Great skua (Stercorarius skua), distributed from temperate regions to the high Arctic: Shetland (60 oN), Iceland (63°N) and Bjørnøya (74°N). Our results demonstrated that plasma concentrations of OCs in Great skuas from Bjørnøya are among the highest in North Atlantic seabirds, with up to 7900μg/kg (ww) ∑OCs. Yet, a latitudinal gradient in POP levels was observed with all compounds being significantly higher in Bjørnøya than in Iceland and Shetland (on average 4-7 fold higher for OCs and 2.5-4.5 for PBDEs, respectively). Contrary to our predictions, skuas breeding at the least contaminated site (i.e., Shetland) experienced the poorest physiological condition; i.e., the highest levels of stress hormones (25% higher) and oxidative stress (50% higher) and the lowest immunoglobulin levels (15% lower) compared to the two other colonies. Finally, our results failed to point out consistent within-colony relationships between biomarkers of health and POPs. Overall, it is suggested that other ecological factors such as food availability could constrain physiological indicators more than anthropogenic contaminants. © 2012 Elsevier Inc. Source

Bourgeon S.,Norwegian Institute for Nature Research | Bourgeon S.,Norwegian Polar Institute | Leat E.H.K.,University of Glasgow | Magnusdottir E.,Iceland Institute of Natural History | And 6 more authors.
PLoS ONE | Year: 2014

Environmental conditions encountered by migratory seabirds in their wintering areas can shape their fitness. However, the underlying physiological mechanisms remain largely unknown as birds are relatively inaccessible during winter. To assess physiological condition during this period, we measured corticosterone concentrations in winter-grown primary feathers of female great skuas (Stercorarius skua) from three breeding colonies (Bjørnøya, Iceland, Shetland) with wintering areas identified from characteristic stable isotope signatures. We subsequently compared winter feather corticosterone levels between three wintering areas (Africa, Europe and America). Among females breeding in 2009, we found significant differences in feather corticosterone levels between wintering areas. Surprisingly, levels were significantly higher in Africa despite seemingly better local ecological factors (based on lower foraging effort). Moreover, contrary to our predictions, females sharing the same wintering grounds showed significant differences in feather corticosterone levels depending on their colony of origin suggesting that some skuas could be using suboptimal wintering areas. Among females wintering in Africa, Shetland females showed feather corticosterone levels on average 22% lower than Bjørnøya and Iceland females. Finally, the lack of significant relationships between winter feather corticosterone levels and any of the breeding phenology traits does not support the hypothesis of potential carry-over effects of winter feather corticosterone. Yet, the fitness consequences of elevated feather corticosterone levels remain to be determined. © 2014 Bourgeon et al. Source

Discover hidden collaborations