Entity

Time filter

Source Type


Idrissi O.,Ghent University | Idrissi O.,French National Institute for Agricultural Research | Udupa M.S.,ICARDA INRA Cooperative Research Project | de Keyser E.,Belgium Institute for Agricultural and Fisheries Research | And 3 more authors.
Plant Molecular Biology Reporter | Year: 2015

Genetic diversity of 70 Mediterranean lentil (Lens culinaris ssp. culinaris Medicus) landraces was assessed using simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). These landraces were also assessed for variation in root and shoot traits and drought tolerance as estimated by relative water content (RWC), water losing rate (WLR) and wilting score (WS). Genetic diversity and clear differentiation of Moroccan landraces from those from northern Mediterranean regions (Italy, Turkey and Greece) were found. High genetic variation in root and shoot traits and traits related to drought tolerance was also observed. No relationship was found between drought tolerance of landraces and their geographic origin. Landraces with higher dry root biomass, chlorophyll content and root–shoot ratio were drought tolerant as evidenced by higher RWC and lower WLR and wilting severity. Kruskal–Wallis non-parametric test (K-W) was used to find SSRs and AFLPs associated with RWC, WLR and WS. Regression analysis showed six SSR and AFLP alleles explaining the highest phenotypic variation of RWC, WLR and WS (ranging from 21 to 50 % for SSRs and from 14 to 33 % for AFLPs). Functional genetic diversity analysis showed relationships between drought response of landraces and linked SSR and AFLP alleles to RWC, WLR and WS according to K-W test using canonical discriminant analysis. Our results confirm the feasibility of using association mapping to find DNA markers associated with drought tolerance in larger numbers of lentil landraces. © 2015 Springer Science+Business Media New York Source


Zaher H.,French National Institute for Agricultural Research | Zaher H.,Cadi Ayyad University | Boulouha B.,French National Institute for Agricultural Research | Baaziz M.,Cadi Ayyad University | And 4 more authors.
Plant OMICS | Year: 2011

'Picholine marocaine' is a predominant olive cultivar in Morocco, widely spread in all the olive growing regions. Clonal selection is one of the breeding methods used for developing varieties, and the clones that showed improved traits in field were selected from 'Picholine marocaine'. In this study, we compare the potential of microsatellite markers with morphological traits to differentiate the varieties and genotypes developed through clonal selections, and to estimate the relationships among the clonal selections, Moroccan local and Mediterranean varieties. For this purpose, we evaluated 7 clonal selections from 'Picholine marocaine', five Moroccan local and seven Mediterranean varieties for variation at 15 morphological traits and 20 microsatellite loci. The results clearly showed that microsatellite markers were more efficient compared to morphological traits to differentiate closely related varieties and genotypes developed through clonal selections,in addition to distantly related varieties. Nine out of the 20 microsatellites markers tested were polymorphic, revealing a total of 48 alleles. Average number of alleles per locus was 5.3, ranged from 3 to 9 alleles. Observed heterozygosity ranged from 0.42 to 1 with a mean of 0.79. Upon comparison, the dendrograms, constructed based on morphological traits and microsatellite markers, showed a positive and highly significant relationship. The combination of microsatellite marker profiles and the morphological characters serve as reliable tools for detailed description of olive varieties. Source


Nordine A.,National Agency of Medicinal and Aromatic Plants | Nordine A.,University Sidi Mohammed Ben Abdellah | Udupa S.M.,ICARDA INRA Cooperative Research Project | Iraqi D.,Morocco National Institute of Agronomic Research | And 4 more authors.
Chemistry and Biodiversity | Year: 2016

In this study, the in vitro and in vivo essential oil (EO) composition and genetic variability in six micropropagated genotypes of Thymus saturejoides Coss., a Mediterranean medicinal and aromatic plant, were analyzed by GC/MS and randomly amplified polymorphic DNA (RAPD). Yield and composition of the EO varied between genotypes. Cluster analysis based on RAPD data and EO grouped the six genotypes in three groups in both culture conditions, thus showing considerable intraspecific genetic and chemical variations. Applying the Mantel test, the result showed a significant correlation between the two proximity matrices RAPD and EO obtained from in vitro genotypes, whereas this correlation was not observed when using the EO obtained from the in vivo genotypes. © 2016 Verlag Helvetica Chimica Acta AG, Zürich. Source


Idrissi O.,Ghent University | Idrissi O.,French National Institute for Agricultural Research | Houasli C.,French National Institute for Agricultural Research | Udupa S.M.,ICARDA INRA Cooperative Research Project | And 4 more authors.
Euphytica | Year: 2015

Lentil (Lens culinaris Medik.) is usually grown under rainfed environments and often encounters drought stress from limited rainfall. Little information is available about shoot and root traits in association with drought tolerance. We studied variability for root and shoot traits related to drought tolerance using an F6–8 population of 133 recombinant inbred lines (RILs) from the cross ILL6002 × ILL5888. We found important variation between genotypes and also high variation in heritability values for root and shoot traits at 38 days after sowing the parents and RILs under both well-watered and drought-stressed treatments during two consecutive seasons in the greenhouse. The higher heritability values were obtained under drought stress treatment and suggest that selection in water-limited environments would be more effective in achieving genetic gains. Drought had reduced trait values, except root–shoot ratio that was likely to be enhanced underlying the importance of this trait for drought tolerance. The quantitative and continuous distributions of variation are the evidence for polygenic control of these traits and the possibility of mapping the quantitative trait loci (QTL). Statistically significant associations between root and shoot traits such as dry shoot biomass and chlorophyll content were noted, highlighting the reliability of indirect selection for underground traits (root) based on these aboveground traits in breeding programs. Significant correlations and regressions were demonstrated between dry root biomass, lateral root number, root surface area, dry shoot biomass, root–shoot ratio, chlorophyll content and drought tolerance as estimated by wilting severity from limited water supply. This shows the importance of a well-developed root system and early biomass development for drought tolerance. Identification and mapping of QTL related to studied traits in this population would be a first step for starting marker-assisted selection. © 2015, Springer Science+Business Media Dordrecht. Source


Idrissi O.,Ghent University | Idrissi O.,French National Institute for Agricultural Research | Udupa S.M.,ICARDA INRA Cooperative Research Project | Houasli C.,French National Institute for Agricultural Research | And 4 more authors.
Plant Breeding | Year: 2015

In the absence of previous molecular characterization, we assessed genetic diversity of 53 Moroccan lentil landraces including two local cultivars using simple sequence repeat (SSR) and amplified fragment length polymorphisms (AFLP). Nineteen SSRs yielded 213 alleles, and seven AFLP primer combinations gave 766 fragments of which 422 were polymorphic. Moderate to high genetic variation was observed. Several small groups of landraces were differentiated. Interestingly, one of the smallest groups contained short-cycle landraces with high early vegetative growth. Landraces in that group were from the dry land location of Abda, where they were likely selected for adaptation to drought and heat stress over centuries. Another group contained two landraces from highland areas that may have been selected for specific adaptation to cold stress. A third group contained one landrace from the Zear region known for its seed quality and has been proposed for the protected designation of origin (PDO) quality mark. Both techniques gave evidence of differentiation of the latter landrace supporting the idea of PDO attribution. Functional grouping according to agro-environmental origins, cycle duration and early vegetative vigour was observed. © 2015 Blackwell Verlag GmbH. Source

Discover hidden collaborations