Entity

Time filter

Source Type

Diagonal, Spain

Barragan F.,IBUB | Barragan F.,University of Barcelona | Carrion-Salip D.,University of Girona | Gomez-Pinto I.,CSIC - Institute of Physical Chemistry "Rocasolano" | And 8 more authors.
Bioconjugate Chemistry | Year: 2012

Conjugates of a dicarba analogue of octreotide, a potent somatostatin agonist whose receptors are overexpressed on tumor cells, with [PtCl 2(dap)] (dap = 1-(carboxylic acid)-1,2-diaminoethane) (3), [(η6-bip)Os(4-CO2-pico)Cl] (bip = biphenyl, pico = picolinate) (4), [(η6-p-cym)RuCl(dap)]+ (p-cym = p-cymene) (5), and [(η6-p-cym)RuCl(imidazole-CO 2H)(PPh3)]+ (6), were synthesized by using a solid-phase approach. Conjugates 3-5 readily underwent hydrolysis and DNA binding, whereas conjugate 6 was inert to ligand substitution. NMR spectroscopy and molecular dynamics calculations showed that conjugate formation does not perturb the overall peptide structure. Only 6 exhibited antiproliferative activity in human tumor cells (IC50 = 63 ± 2 μ in MCF-7 cells and IC50 = 26 ± 3 μ in DU-145 cells) with active participation of somatostatin receptors in cellular uptake. Similar cytotoxic activity was found in a normal cell line (IC50 = 45 ± 2.6 μ in CHO cells), which can be attributed to a similar level of expression of somatostatin subtype-2 receptor. These studies provide new insights into the effect of receptor-binding peptide conjugation on the activity of metal-based anticancer drugs, and demonstrate the potential of such hybrid compounds to target tumor cells specifically. © 2012 American Chemical Society. Source


Santos R.C.,University of Coimbra | Salvador J.A.R.,University of Coimbra | Marin S.,IBUB | Cascante M.,IBUB | And 2 more authors.
Bioorganic and Medicinal Chemistry | Year: 2010

Chemical transformation studies were conducted on betulin and betulinic acid, common plant-derived lupane-type triterpenes. The concise synthesis, via a stepwise approach, of betulin and betulinic acid carbamate and N-acylheterocyclic containing derivatives is described. All new compounds, as well as betulinic acid were tested in vitro for their cytotoxic activity. Most of the compounds have shown a better cytotoxic profile than betulinic acid, including the synthesized betulin derivatives. Compounds 25 and 32 were the most promising derivatives, being up to 12-fold more potent than betulinic acid against human PC-3 cell lines (IC50 values of 1.1 and 1.8 μM, respectively). © 2010 Elsevier Ltd. All rights reserved. Source


Barragan F.,IBUB | Barragan F.,University of Barcelona | Lopez-Senin P.,IBUB | Salassa L.,University of Warwick | And 5 more authors.
Journal of the American Chemical Society | Year: 2011

A photoactivated ruthenium(II) arene complex has been conjugated to two receptor-binding peptides, a dicarba analogue of octreotide and the Arg-Gly-Asp (RGD) tripeptide. These peptides can act as "tumor-targeting devices" since their receptors are overexpressed on the membranes of tumor cells. Both ruthenium-peptide conjugates are stable in aqueous solution in the dark, but upon irradiation with visible light, the pyridyl-derivatized peptides were selectively photodissociated from the ruthenium complex, as inferred by UV-vis and NMR spectroscopy. Importantly, the reactive aqua species generated from the conjugates, [(η 6-p-cym)Ru(bpm)(H 2O)] 2+, reacted with the model DNA nucleobase 9-ethylguanine as well as with guanines of two DNA sequences, 5′dCATGGCT and 5′dAGCCATG. Interestingly, when irradiation was performed in the presence of the oligonucleotides, a new ruthenium adduct involving both guanines was formed as a consequence of the photodriven loss of p-cymene from the two monofunctional adducts. The release of the arene ligand and the formation of a ruthenated product with a multidentate binding mode might have important implications for the biological activity of such photoactivated ruthenium(II) arene complexes. Finally, photoreactions with the peptide-oligonucleotide hybrid, Phac-His-Gly-Met-linker-p 5′dCATGGCT, also led to arene release and to guanine adducts, including a GG chelate. The lack of interaction with the peptide fragment confirms the preference of such organometallic ruthenium(II) complexes for guanine over other potential biological ligands, such as histidine or methionine amino acids. © 2011 American Chemical Society. Source

Discover hidden collaborations