Entity

Time filter

Source Type


Shimanovich U.,University of Cambridge | Bernardes G.J.L.,University of Cambridge | Bernardes G.J.L.,University of Lisbon | Knowles T.P.J.,University of Cambridge | Cavaco-Paulo A.,IBB Institute for Biotechnology And Bioengineering
Chemical Society Reviews | Year: 2014

Micro- and nano-scale systems have emerged as important tools for developing clinically useful drug delivery systems. In this tutorial review, we discuss the exploitation of biomacromolecules for this purpose, focusing on proteins, polypeptides, nucleic acids and polysaccharides and mixtures thereof as potential building blocks for novel drug delivery systems. We focus on the mechanisms of formation of micro- and nano-scale protein-based capsules and shells, as well as on the functionalization of such structures for use in targeted delivery of bioactive materials. We summarise existing methods for protein-based capsule synthesis and functionalization and highlight future challenges and opportunities for delivery strategies based on biomacromolecules. © 2014 The Royal Society of Chemistry. Source


Rodrigues L.R.,IBB Institute for Biotechnology And Bioengineering
Advances in Experimental Medicine and Biology | Year: 2011

Microbial infections resulting from bacterial adhesion to biomaterial surfaces have been observed on almost all medical devices. Biofilm infections pose a number of clinical challenges due to their resistance to immune defence mechanisms and antimicrobials, and, regardless of the sophistication of the implant, all medical devices are susceptible to microbial colonisation and infection. Research efforts are currently directed towards eliminating or reducing infection of medical devices. Strategies to prevent biofilm formation include physiochemical modification of the biomaterial surface to create anti-adhesive surfaces, incorporation of antimicrobial agents into medical device polymers, mechanical design alternatives, and release of antibiotics. Nevertheless, the success of these alternatives has been modest, mainly due to the various environments into which devices are placed and the diversity of ways in which organisms can colonise surfaces. Biosurfactants have been reported as a promising strategy as they effectively inhibit bacterial adhesion and retard biofilm formation, and are thus potentially useful as a new generation of anti-adhesive and antimicrobial coatings for medical devices. © 2011 Springer Science+Business Media B.V. Source


Ribeiro O.,IBB Institute for Biotechnology And Bioengineering
Bioengineered | Year: 2013

To improve the general secretion ability of the biotechnologically relevant fungus Ashbya gossypii, random mutagenesis with ethyl methane sulfonate (EMS) was performed. The selection and screening strategy followed revealed mutants with improved secretion of heterologous Trichoderma reesei endoglucanase I (EGI), native α-amylase and/or native β-glucosidase. One mutant, S436, presented 1.4- to 2-fold increases in all extracellular enzymatic activities measured, when compared with the parent strain, pointing to a global improvement in protein secretion. Three other mutants exhibited 2- to 3-fold improvements in only one (S397, B390) or two (S466) of the measured activities.   A targeted genetic approach was also followed. Two homologs of the Saccharomyces cerevisiae GAS1, AgGAS1A (AGL351W) and AgGAS1B (AGL352W), were deleted from the A. gossypii genome. For both copies deletion, a new antibiotic marker cassette conferring resistance to phleomycin, BLE3, was constructed. GAS1 encodes an β-1,3-glucanosyltransglycosylase involved in cell wall assembly. Higher permeability of the cell wall was expected to increase the protein secretion capacity. However, total protein secreted to culture supernatants and secreted EGI activity did not increase in the Aggas1AΔ mutants. Deletion of the AgGAS1B copy affected cellular morphology and resulted in severe retardation of growth, similarly to what has been reported for GAS1-defficient yeast. Thus, secretion could not be tested in these mutants. Source


Sillankorva S.,IBB Institute for Biotechnology And Bioengineering
Biofouling | Year: 2010

Despite the recent enthusiasm for using bacteriophages as bacterial control agents, there are only limited studies concerning phage interaction with their respective hosts residing in mixed biofilm consortia and especially in biofilms where the host species is a minor constituent. In the present work, a study was made of mono and dual species biofilms formed by Pseudomonas fluorescens (Gram-negative) and/or Staphylococcus lentus (Gram-positive) and their fate after infection with phages. The dual species biofilms consisted predominantly of S. lentus. The exposure of these biofilms to a cocktail containing both P. fluorescens and S. lentus phages effectively killed and removed the hosts from the substratum. Additionally, this cocktail approach also controlled the hosts released from the biofilms to the planktonic phase. The ability of phages to control a host population present in minority in the mixed species biofilm was also assessed. For this objective, the biofilms were challenged only with phage phiIBB-PF7A, specific for P. fluorescens and the results obtained were to some extent unpredicted. First, phiIBB-PF7A readily reached the target host and caused a significant population decrease. Secondly, and surprisingly, this phage was also capable of causing partial damage to the biofilms leading to the release of the non-susceptible host (S. lentus) from the dual species biofilms to the planktonic phase. The efficiency of phage treatment of biofilms was to some extent dependent on the number of cells present and also conditioned by the infection strategy (dynamic or static) utilized in the infection of the biofilms. Nevertheless, in most circumstances phages were well capable of controlling their target hosts. Source


Mussatto S.I.,IBB Institute for Biotechnology And Bioengineering
Journal of the Science of Food and Agriculture | Year: 2014

Brewer's spent grain (BSG) is the most abundant by-product generated from the beer-brewing process, representing approximately 85% of the total by-products obtained. This material is basically constituted by the barley grain husks obtained as solid residue after the wort production. Since BSG is rich in sugars and proteins, the main and quickest alternative for elimination of this industrial by-product has been as animal feed. However, BSG is a raw material of interest for application in different areas because of its low cost, large availability throughout the year and valuable chemical composition. In the last decade, many efforts have been directed towards the reuse of BSG, taking into account the incentive that has been given to recycle the wastes and by-products generated by industrial activities. Currently, many interesting and advantageous methods for application of BSG in foods, in energy production and in chemical and biotechnological processes have been reported. The present study presents and discusses the most recent perspectives for BSG application in such areas. © 2013 Society of Chemical Industry. Source

Discover hidden collaborations