Gifhorn, Germany

Time filter

Source Type

A climate vehicle for testing a vehicle component under defined climate conditions includes a cabin that is separated by a cabin shell from a climate vehicle environment surrounding the climate vehicle. A climate control unit is arranged in the cabin and configured to control the climate of the air that is present in the cabin. A fan is configured to accelerate the climate-controlled air in a defined direction. A tunnel with an inlet opening is configured to receive the accelerated climate-controlled air. The tunnel has a tubular tunnel part configured to convey the accelerated climate-controlled air. The tubular tunnel part has a section that accommodates the vehicle component to be tested. The tunnel has an outlet opening configured to release the conveyed accelerated climate-controlled air into the cabin.


A device for a valve train for switching over the lift of gas-exchange valves of an internal combustion engine comprising a camshaft on which at least one cam carrier with at least three different cam profiles is mounted so as to be non-rotatable and axially movable. The device includes an adjustment shaft arranged parallel to the camshaft and on which a first transmission element is mounted so as to be non-rotatable and axially movable, the first transmission element having a guide unit, a housing-fixed first guide element operatively connected to the guide unit, a second guide element operatively connected, on the one hand, to the guide unit and, on the other hand, to the cam carrier via a second transmission element, the second transmission element being connected to the cam carrier so as to be axially unmovable, and a push element operatively connected to the first transmission element.


A device for a valve train for switching over the lift of gas-exchange valves of an internal combustion engine, the internal combustion engine including a camshaft on which at least one cam carrier with at least three different cam profiles is mounted so as to be torque-proof and axially movable. The device includes an adjustment shaft arranged parallel to the camshaft and on which a first transmission element is mounted so as to be torque-proof and axially movable, the first transmission element having a guide unit, a housing-fixed first guide element operatively connected to the guide unit, a second guide element that, on the one hand, is operatively connected to the guide unit and, on the other hand, to the cam carrier via a second transmission element, whereby the second transmission element is connected to the cam carrier so as to be axially immovable, and a push element.


Patent
IAV GmbH | Date: 2015-01-20

A method for producing a shaft-hub connection having a secondary bearing seat that is on the shaft and that is axially at a distance from the shaft-hub connection includes determining a dimensional deviation relative to a final dimension of the bearing seat as a derivative action for a deformation of the bearing seat. A final machining of the bearing seat is performed with the dimensional deviation before assembly of the shaft-hub connection. Then, the shaft-hub connection is produced by a press-fit connection. The deformation of the shaft caused by the shaft-hub connection deforms the bearing seat to the final dimension, in that the deformation of the shaft compensates for the dimensional deviation of the bearing seat.


The invention relates to a device for a valve train for changing the lift of gas exchange valves of an internal combustion engine, having a camshaft rotatably mounted in a housing, which camshaft consists of an arrangement of, in succession coaxially from the inside to the outside, at least one push rod, at least one carrier shaft and at least one cam unit provided with at least two different cams and at least one thrust pin, and the cam shaft is surrounded at least partially by at least one shift gate mounted non-rotatably and axially movably in the housing. At least one change-over pin and at least one support pin are immovably connected to the push rod, wherein the change-over pin and the support pin extend in openings at least right through the carrier shaft and the change-over pin can be brought into operative contact with at least one switching contour on the shift gate and the support pin can be brought into operative contact with at least one support contour on the shift gate


Patent
IAV GmbH | Date: 2014-10-23

A method for purging a fuel tank includes providing a three-way valve connected to the fuel tank via a first purging line, connected to a second purging line opening into a suction duct and connected to a third purging line opening into an adsorption container. A first path can be released in the three-way valve, based on the pressure inside the fuel tank exceeding a first predetermined opening pressure inside the fuel tank and the engine being in operation, such that the fuel vapours are caused to be purge out of the fuel tank into the suction duct. A second path can also be released in the three-way valve, based on the pressure inside the fuel tank exceeding a second predetermined opening pressure inside the fuel tank and the engine being not in operation, such that the fuel vapours are caused to be purged out of the fuel tank into the adsorption container.


Patent
IAV GmbH | Date: 2013-10-07

A charging device for internal combustion engines includes a compressor part configured to compress drawn-in combustion air. The compressor part is arranged in an intake line of the internal combustion engine and is connected to the internal combustion engine via an actuatable mechanical coupler. An expansion part is disposed in a circulation system for a circulating working medium. The circulation system includes at least one exhaust-gas heat exchanger and a circulation pump such that the expansion part is driven utilizing waste heat from the internal combustion engine. An electric machine is connected to the expansion part so as to drive the compressor part. The electric machine is connected to the compressor part. An operational electric connection is disposed between the electric machine and a battery so that electric energy is stored during an energy-recovery mode or else so that electric energy is provided to drive the electric machine.


A cylinder head of an internal combustion engine includes a camshaft configured to actuate gas-exchange valves of the internal combustion engine. The camshaft has two cam segments that are joined to each other in such a manner that the cam segments cannot rotate with respect to each other, but are moveable axially relative to each other. End faces of the bearing sites of the cam segments each have splines running radially along respective outer circumferential surfaces of the cam segments. A camshaft bearing has an inner bearing ring with splines being formed on an inner surface. The splines of the inner bearing ring completely penetrate the axial course of the inner surface and the splines of the adjacent cam segments intermesh with the splines of the inner bearing ring on both sides thereof such that the inner bearing ring forms a non-rotating connection between the camshaft segments.


An adjustment shaft actuator. The adjustment shaft actuator includes an adjustment shaft arranged parallel to a camshaft of a valve train and having a lever unit with a lever arm, a cam unit that has a cam and that is connected to the camshaft in a non-rotatable manner, whereby the lever unit is arranged so as to be axially movable on the adjustment shaft or the cam unit is arranged so as to be axially movable on the camshaft, and an adjustment unit provided in order to effectuate axial movement between the at least one lever unit and the at least one cam unit, by way of which the at least one lever arm can be brought into effective contact with the cam in order to bring about a rotation of the adjustment shaft by rotating the camshaft.


A method for determining the proportion of gaseous working medium in a cylinder of an internal combustion engine includes opening an injector so as to feed fuel directly into the cylinder. The injector is connected to a fuel line in which a pressure sensor is arranged. The pressure in the fuel line is measured when the injector is open. The proportion of gaseous working medium in the cylinder is determined in conjunction with an association between the measured pressure in the fuel line when the injector is open and the proportion of gaseous working medium in the cylinder.

Loading IAV GmbH collaborators
Loading IAV GmbH collaborators