Entity

Time filter

Source Type


Pan S.-Y.,National Taiwan University | Lorente Lafuente A.M.,RWTH Aachen | Lorente Lafuente A.M.,Institute for Advanced Sustainability Studies IASS Potsdam | Chiang P.-C.,National Taiwan University
Applied Energy | Year: 2016

Multi-waste treatment of slag and wastewater can be combined with CO2 capture in the steelmaking industry by the high-gravity carbonation (i.e., HiGCarb) process using a rotating packed bed. In this study, the HiGCarb process is comprehensively evaluated by an engineering, environmental and economic (3E) triangle model. The feedstock CO2 for the HiGCarb process can be obtained directly from the industrial stacks, eliminating the need for additional CO2 concentration and transportation. The reacted steelmaking slag, i.e., basic oxygen furnace slag (BOFS), is suited as cement substitution material, avoiding environmental burden from the cement industry, also a CO2-intensive emission source. Significant environmental benefits can be realized by establishing the waste-to-resource supply chain between the steelmaking and cement industries. The life-cycle assessment shows a net CO2 capture amount by the HiGCarb process of 282 kg-CO2/t-BOFS, accompanied by a CO2 avoidance of 997 kg-CO2/t-BOFS due to the product utilization. Moreover, the amount of revenue gained was estimated to be 20.2-23.2 USD/t-BOFS treated by the HiGCarb process. According to the 3E triangle model, the HiGCarb process is shown to be environmentally promising and economically feasible due to its high overall engineering performance, which makes it suitable as a potential CO2 sink in industry. © 2016 Elsevier Ltd. Source


Yu X.,CAS Shenyang Institute of Applied Ecology | Yu X.,University of Chinese Academy of Sciences | Geng Y.,CAS Shenyang Institute of Applied Ecology | Geng Y.,Shanghai JiaoTong University | And 3 more authors.
Sustainability (Switzerland) | Year: 2015

With less than 6% of total global water resources but one fifth of the global population, China is facing serious challenges for its water resources management, particularly in rural areas due to the long-standing urban-rural dualistic structure and the economic-centralized developmental policies. This paper addresses the key water crises in rural China including potable water supply, wastewater treatment and disposal, water for agricultural purposes, and environmental concerns, and then analyzes the administrative system on water resources from the perspective of characteristics of the current administrative system and regulations; finally, synthetic approaches to solve water problems in rural China are proposed with regard to institutional reform, regulation revision, economic instruments, technology innovation and capacity-building. These recommendations provide valuable insights to water managers in rural China so that they can identify the most appropriate pathways for optimizing their water resources, reducing the total wastewater discharge and improving their water-related ecosystem. © 2015 by the authors; licensee MDPI, Basel, Switzerland. Source


Kuik F.,Institute for Advanced Sustainability Studies IASS Potsdam | Lauer A.,Institute for Advanced Sustainability Studies IASS Potsdam | Lauer A.,German Aerospace Center | Beukes J.P.,North West University South Africa | And 6 more authors.
Atmospheric Chemistry and Physics | Year: 2015

South Africa has one of the largest industrialized economies in Africa. Emissions of air pollutants are particularly high in the Johannesburg-Pretoria metropolitan area, the Mpumalanga Highveld and the Vaal Triangle, resulting in local air pollution. This study presents and evaluates a setup for conducting modeling experiments over southern Africa with the Weather Research and Forecasting model including chemistry and aerosols (WRF-Chem), and analyzes the contribution of anthropogenic emissions to the total black carbon (BC) concentrations from September to December 2010. The modeled BC concentrations are compared with measurements obtained at the Welgegund station situated ca. 100 km southwest of Johannesburg. An evaluation of WRF-Chem with observational data from ground-based measurement stations, radiosondes, and satellites shows that the meteorology is modeled mostly reasonably well, but precipitation amounts are widely overestimated and the onset of the wet season is modeled approximately 1 month too early in 2010. Modeled daily mean BC concentrations show a temporal correlation of 0.66 with measurements, but the total BC concentration is underestimated in the model by up to 50 %. Sensitivity studies with anthropogenic emissions of BC and co-emitted species turned off show that anthropogenic sources can contribute up to 100 % to BC concentrations in the industrialized and urban areas, and anthropogenic BC and co-emitted species together can contribute up to 60 % to PM1 levels. Particularly the co-emitted species contribute significantly to the aerosol optical depth (AOD). Furthermore, in areas of large-scale biomass-burning atmospheric heating rates are increased through absorption by BC up to an altitude of about 600hPa. © Author(s) 2015. Source

Discover hidden collaborations