Entity

Time filter

Source Type


Postberg F.,University of Heidelberg | Hillier J.K.,University of Heidelberg | Armes S.P.,University of Sheffield | Bugiel S.,Max Planck Institute for Nuclear Physics | And 68 more authors.
Meteoritics and Planetary Science | Year: 2014

The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 μm), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight-spare low-density (approximately 0.01 g cm-3) silica aerogel. The impact velocities (3-21 km s-1) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km s-1. The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 μm and below hard to identify at low capture speeds (<10 km s-1). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found. © The Meteoritical Society, 2014. Source


Brenker F.E.,Goethe University Frankfurt | Westphal A.J.,University of California at Berkeley | Vincze L.,Ghent University | Burghammer M.,European Synchrotron Radiation Facility | And 62 more authors.
Meteoritics and Planetary Science | Year: 2014

Here, we report analyses by synchrotron X-ray fluorescence microscopy of the elemental composition of eight candidate impact features extracted from the Stardust Interstellar Dust Collector (SIDC). Six of the features were unambiguous tracks, and two were crater-like features. Five of the tracks are so-called "midnight" tracks-that is, they had trajectories consistent with an origin either in the interstellar dust stream or as secondaries from impacts on the Sample Return Capsule (SRC). In a companion paper reporting synchrotron X-ray diffraction analyses of ISPE candidates, we show that two of these particles contain natural crystalline materials: the terminal particle of track 30 contains olivine and spinel, and the terminal particle of track 34 contains olivine. Here, we show that the terminal particle of track 30, Orion, shows elemental abundances, normalized to Fe, that are close to CI values, and a complex, fine-grained structure. The terminal particle of track 34, Hylabrook, shows abundances that deviate strongly from CI, but shows little fine structure and is nearly homogenous. The terminal particles of other midnight tracks, 29 and 37, had heavy element abundances below detection threshold. A third, track 28, showed a composition inconsistent with an extraterrestrial origin, but also inconsistent with known spacecraft materials. A sixth track, with a trajectory consistent with secondary ejecta from an impact on one of the spacecraft solar panels, contains abundant Ce and Zn. This is consistent with the known composition of the glass covering the solar panel. Neither crater-like feature is likely to be associated with extraterrestrial materials. We also analyzed blank aerogel samples to characterize background and variability between aerogel tiles. We found significant differences in contamination levels and compositions, emphasizing the need for local background subtraction for accurate quantification. © The Meteoritical Society, 2014. Source


Flynn G.J.,SUNY Plattsburgh Plattsburgh | Sutton S.R.,Argonne National Laboratory | Lai B.,Argonne National Laboratory | Wirick S.,University of Chicago | And 65 more authors.
Meteoritics and Planetary Science | Year: 2014

The NASA Stardust spacecraft exposed an aerogel collector to the interstellar dust passing through the solar system. We performed X-ray fluorescence element mapping and abundance measurements, for elements 19 ≤ Z ≤ 30, on six "interstellar candidates," potential interstellar impacts identified by Stardust at Home and extracted for analyses in picokeystones. One, I1044,3,33, showed no element hot-spots within the designated search area. However, we identified a nearby surface feature, consistent with the impact of a weak, high-speed particle having an approximately chondritic (CI) element abundance pattern, except for factor-of-ten enrichments in K and Zn and an S depletion. This hot-spot, containing approximately 10 fg of Fe, corresponds to an approximately 350 nm chondritic particle, small enough to be missed by Stardust at Home, indicating that other techniques may be necessary to identify all interstellar candidates. Only one interstellar candidate, I1004,1,2, showed a track. The terminal particle has large enrichments in S, Ti, Cr, Mn, Ni, Cu, and Zn relative to Fe-normalized CI values. It has high Al/Fe, but does not match the Ni/Fe range measured for samples of Al-deck material from the Stardust sample return capsule, which was within the field-of-view of the interstellar collector. A third interstellar candidate, I1075,1,25, showed an Al-rich surface feature that has a composition generally consistent with the Al-deck material, suggesting that it is a secondary particle. The other three interstellar candidates, I1001,1,16, I1001,2,17, and I1044,2,32, showed no impact features or tracks, but allowed assessment of submicron contamination in this aerogel, including Fe hot-spots having CI-like Ni/Fe ratios, complicating the search for CI-like interstellar/interplanetary dust. © The Meteoritical Society, 2014. Source


Westphal A.J.,University of California at Berkeley | Bechtel H.A.,Lawrence Berkeley National Laboratory | Brenker F.E.,Goethe University Frankfurt | Butterworth A.L.,University of California at Berkeley | And 64 more authors.
Meteoritics and Planetary Science | Year: 2014

With the discovery of bona fide extraterrestrial materials in the Stardust Interstellar Dust Collector, NASA now has a fundamentally new returned sample collection, after the Apollo, Antarctic meteorite, Cosmic Dust, Genesis, Stardust Cometary, Hayabusa, and Exposed Space Hardware samples. Here, and in companion papers in this volume, we present the results from the Preliminary Examination of this collection, the Stardust Interstellar Preliminary Examination (ISPE). We found extraterrestrial materials in two tracks in aerogel whose trajectories and morphology are consistent with an origin in the interstellar dust stream, and in residues in four impacts in the aluminum foil collectors. While the preponderance of evidence, described in detail in companion papers in this volume, points toward an interstellar origin for some of these particles, alternative origins have not yet been eliminated, and definitive tests through isotopic analyses were not allowed under the terms of the ISPE. In this summary, we answer the central questions of the ISPE: How many tracks in the collector are consistent in their morphology and trajectory with interstellar particles? How many of these potential tracks are consistent with real interstellar particles, based on chemical analysis? Conversely, what fraction of candidates are consistent with either a secondary or interplanetary origin? What is the mass distribution of these particles, and what is their state? Are they particulate or diffuse? Is there any crystalline material? How many detectable impact craters (>100 nm) are there in the foils, and what is their size distribution? How many of these craters have analyzable residue that is consistent with extraterrestrial material? And finally, can craters from secondaries be recognized through crater morphology (e.g., ellipticity)?. © The Meteoritical Society, 2014. Source


Westphal A.J.,Space Science Laboratory Uc Berkeley Berkeley | Anderson D.,Space Science Laboratory Uc Berkeley Berkeley | Butterworth A.L.,Space Science Laboratory Uc Berkeley Berkeley | Frank D.R.,NASA | And 65 more authors.
Meteoritics and Planetary Science | Year: 2014

Here, we report the identification of 69 tracks in approximately 250 cm2 of aerogel collectors of the Stardust Interstellar Dust Collector. We identified these tracks through Stardust at home, a distributed internet-based virtual microscope and search engine, in which > 30,000 amateur scientists collectively performed >9 × 107 searches on approximately 106 fields of view. Using calibration images, we measured individual detection efficiency, and found that the individual detection efficiency for tracks > 2.5 μm in diameter was >0.6, and was >0.75 for tracks >3 μm in diameter. Because most fields of view were searched >30 times, these results could be combined to yield a theoretical detection efficiency near unity. The initial expectation was that interstellar dust would be captured at very high speed. The actual tracks discovered in the Stardust collector, however, were due to low-speed impacts, and were morphologically strongly distinct from the calibration images. As a result, the detection efficiency of these tracks was lower than detection efficiency of calibrations presented in training, testing, and ongoing calibration. Nevertheless, as calibration images based on low-speed impacts were added later in the project, detection efficiencies for low-speed tracks rose dramatically. We conclude that a massively distributed, calibrated search, with amateur collaborators, is an effective approach to the challenging problem of identification of tracks of hypervelocity projectiles captured in aerogel. © The Meteoritical Society, 2014. Source

Discover hidden collaborations