Time filter

Source Type

Cluj-Napoca, Romania

Ezzat K.,University of Stockholm | Helmfors H.,University of Stockholm | Tudoran O.,Chiricuta Cancer Institute | Juks C.,University of Tartu | And 7 more authors.
FASEB Journal | Year: 2012

Cell-penetrating peptides (CPPs) are short cationic peptides that penetrate cells by interacting with the negatively charged plasma membrane; however, the detailed uptake mechanism is not clear. In contrary to the conventional mode of action of CPPs, we show here that a CPP, PepFect14 (PF14), forms negatively charged nanocomplexes with oligonucleotides and their uptake is mediated by class-A scavenger receptors (SCARAs). Specific inhibitory ligands of SCARAs, such as fucoidin, polyinosinic acid, and dextran sulfate, totally inhibit the activity of PF14-oligonucleotide nanocomplexes in the HeLa pLuc705 splice-correction cell model, while nonspecific, chemically related molecules do not. Furthermore, RNA interference (RNAi) knockdown of SCARA subtypes (SCARA3 and SCARA5) that are expressed in this cell line led to a significant reduction of the activity to <50%. In line with this, immunostaining shows prevalent colocalization of the nanocomplexes with the receptors, and electron microscopy images show no binding or internalization of the nanocomplexes in the presence of the inhibitory ligands. Interestingly, naked oligonucleotides also colocalize with SCARAs when used at high concentrations. These results demonstrate the involvement of SCARA3 and SCARA5 in the uptake of PF14-oligonucleotide nanocomplexes and suggest for the first time that some CPP-based systems function through scavenger receptors, which could yield novel possibilities to understand and improve the transfection by CPPs. © FASEB.

Chedea V.S.,National Research Development Institute for Animal Biology and Nutrition Balotesti IBNA | Pintea A.,University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca | Bunea A.,University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca | Braicu C.,Chiricuta Cancer Institute | And 2 more authors.
BioMed Research International | Year: 2014

The aim of this study was to evaluate the effect of the carotenoidic saponified extract of Physalis alkekengi sepals (PA) towards the lipoxygenase (LOX) oxidation of linoleic acid. Lipoxygenase activity in the presence of carotenoids, standard and from extract, was followed by its kinetic behaviour determining the changes in absorption at 234 nm. The standard carotenoids used were β -carotene (β -car), lutein (Lut), and zeaxanthin (Zea). The calculated enzymatic specific activity (ESA) after 600 s of reaction proves that PA carotenoidic extract has inhibitory effect on LOX oxidation of linoleic acid. A longer polyenic chain of carotenoid structure gives a higher ESA during the first reaction seconds. This situation is not available after 600 s of reaction and may be due to a destruction of this structure by cooxidation of carotenoids, besides the classical LOX reaction. The PA carotenoidic extract inhibiting the LOX-1 reaction can be considered a source of lipoxygenase inhibitors. © 2014 Veronica Sanda Chedea et al.

Discover hidden collaborations