Hysitron Incorporated

Saint Cloud, MN, United States

Hysitron Incorporated

Saint Cloud, MN, United States

Time filter

Source Type

Song S.X.,Hysitron Incorporated | Nieh T.G.,University of Tennessee at Knoxville
Intermetallics | Year: 2011

A series of experimental efforts have recently made in an attempt to gain understanding of shear band propagation in metallic glasses. It was found that plastic flow serration observed in compression was actually caused by successive (intermittent) shear along a single shear plane, not random shear band emission. Several experimental techniques, including conventional Instron, attaching linear voltage differential transducer, strain gage, and high-speed camera, were employed to investigate shear band propagation during flow serration. The test results showed that the shear band propagation consisted of the acceleration, deceleration, and the final arrest. The maximum velocity of a propagating shear band was about 4 mm s -1, which corresponds to a high strain rate of about 10 5 s -1. The viscosity of a propagating shear band was evaluated to be only about 1 × 10 4-5 × 10 5 Pa s, indicating the shear band was very fluidic. Video images capture from a high-speed camera also revealed that the shear was simultaneous, rather than in a progressive fashion. © 2011 Elsevier Ltd. All rights reserved.


Patent
Hysitron Incorporated | Date: 2012-11-26

A microelectromechanical transducer and test system is disclosed. One embodiment includes a body, a probe moveable relative to the body, and a micromachined comb drive. The micromachined comb drive includes a plurality of sensing capacitors forming a differential capacitive displacement sensor, each sensing capacitor comprising a plurality of comb capacitors and each configured to provide capacitance levels which, together, are representative of a position of the probe.


Patent
Hysitron Incorporated | Date: 2012-11-28

A system and method of measuring an interaction force is disclosed. One embodiment includes providing a method of measuring an interaction force including providing a microelectromechanical transducer. The transducer includes a body, a probe moveable relative to the body, and a micromachined comb drive. The micromachined comb drive includes a differential capacitive displacement sensor to provide a sensor output signal representative of an interaction force on the probe. The probe is moved relative to a sample surface. An interaction force is determined between the probe and the sample surface using the sensor output, as the probe is moved relative to the sample surface.


Patent
Hysitron Incorporated | Date: 2011-05-02

A microelectromechanical (MEMS) nanoindenter transducer including a body, a probe coupled to and moveable relative to the body, the probe holding a removeable indenter tip, a first micromachined comb drive and a second micromachined comb drive. The first micromachined comb drive includes an actuator comprising a plurality of electrostatic capacitive actuators configured to drive the probe along a first axis, including in an indentation direction, in response to an applied bias voltage, and a displacement sensor comprising a plurality of differential capacitive sensors having capacitance levels which together are representative of a position of the probe relative to the first axis. The second micromachined comb drive includes an actuator comprising a plurality of electrostatic capacitive actuators configured to drive the probe along a second axis, which is perpendicular to the first axis, in response to an applied bias voltage, and a displacement sensor comprising a plurality of differential capacitive sensors having capacitance levels which together are representative of a position of the probe relative to the second axis. Each of the electrostatic capacitive actuators and the differential capacitive sensors comprises an electrode comb pair, each electrode comb pair including a fixed electrode comb coupled to the body and a moveable electrode comb coupled to the probe.


An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.


Patent
Hysitron Incorporated | Date: 2012-04-24

A microelectromechanical nanoindenter including a body, a probe moveable relative to the body, an indenter tip coupled to an end of the moveable probe, and a micromachined comb drive. The micromachined comb drive includes an electrostatic actuator capacitor configured to drive the probe, along with the indenter tip. The micromachined comb drive includes a plurality of sensing capacitors forming a differential capacitive displacement sensor, each sensing capacitor comprising a plurality of comb capacitors and each configured to provide capacitance levels which, together, are representative of a position of the probe, wherein each of the comb capacitors of the actuator capacitor and the sensing capacitors includes a fixed electrode comb coupled to the body and a moveable electrode comb coupled to the probe.


A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.


Grant
Agency: Department of Defense | Branch: Air Force | Program: SBIR | Phase: Phase II | Award Amount: 749.97K | Year: 2013

ABSTRACT: A better understanding of the thermo-mechanical response, characteristics and properties of materials can lead to improved device performance as well as facilitate the design of new devices and materials for various applications. Although there has been significant progress in the development of micro/nanomechanical testing techniques and tools over the last decade, commercially available tools do not provide adequate capabilities for investigating thermo-mechanical behaviors of micro/nano scale samples at elevated temperatures over 600°C. In order to extend quantitative thermo-mechanical property measurements to higher temperature applications, we propose the development of a high-temperature microsample testing system capable of temperature control up to 1100°C. The proposed thermo-mechanical testing system can perform uniaxial compression and tensile tests inside a scanning electron microscope or under a high-resolution optical microscope and record real-time in-situ video images of the material deformation behavior. In this SBIR we will develop a heating stage capable of sample heating up to 1100°C, a transducer capable of applying a maximum force higher than 5 N and a maximum travel range of 0.5 mm, a sample holder capable of mounting a microsample for tensile test, and a piezo-motor stage for sample approach, alignment, and precise positioning. Successful completion of this SBIR development will provide a high-temperature microsample testing system offering unprecedented capabilities for exploring relationships between temperature, mechanical properties, and structural behavior of materials. BENEFIT: The proposed system is intended for pioneering studies of the thermo-mechanical characteristics of microscale samples at high temperatures up to 1100°C. The realization of the proposed high-temperature microsample testing system will provide an unprecedented thermo-mechanical testing tool to researchers interested in the quantitative exploration of the relationship between temperature, mechanical property, and structural behavior of materials. Many materials and devices are used and operated at high temperatures. The thermo-mechanical reliability and performance of these materials need to be fully understood through proper mechanical testing. Increasing the temperature control capability of the mechanical testing system to cover the sample material/device operating temperature range is critical. Material reliability data related to wear, fatigue, and material strength obtained from thermo-mechanical testing can be used to estimate the possible operational temperature range and life span in the high temperature environment. The proposed mechanical test system will introduce many new scientific findings especially to researchers interested in high temperature materials such as metal alloys, composites, and ceramics routinely used at temperatures from 600°C to 1100°C. The proposed system is compatible with in-situ optical/electron microscopy which can be used to investigate structure-property correlations and the influence of pre-existing defects on the mechanical response of materials. In addition to optical and electron imaging, additional in-situ measurement techniques (e.g. electron backscattered diffraction (EBSD)) can also be employed during the high temperature mechanical test. Performing in-situ microscopy coupled with quantitative micro/nano-mechanical testing can provide a clear differentiation between the many possible causes of force or displacement transients which may include dislocation burst, phase transformation, shear banding or fracture onset. Understanding the fundamentals of micro/nano mechanics can facilitate the design of new devices for various applications and improve overall device performance. The SBIR company"s (our) product user groups have expressed considerable interest in in-situ microscopy micro/nano-mechanical testing capabilities at elevated temperatures. From our experience as a pioneer in the development and commercialization of in-situ electron microscopy micro/nano-mechanical testers, material research laboratories such as university labs, government research institutions, and industrial R & D facilities are the potential customers of the proposed instrument. Based on the feedback from the users, we are confident that the proposed thermo-mechanical testing system can be marketed to many frontier researchers eager to perform unprecedented thermo-mechanical characterizations. Strong demand for the proposed instrument will be derived from researchers and industries whose applications are in advanced alloys, various composite materials, and ceramics. Defense, energy, aerospace, automobile, semiconductor, and composites related industries and research institutions have a high degree of interest in thermo-mechanical tests at elevated temperatures above 600°C. Measuring mechanical properties and investigating material behaviors at high temperatures can help to understand phase transformation behavior, failure mode, and reliability of the structures. This capability can have a tremendous economic impact as it provides a means for tailoring materials for an intended purpose based on their properties. Micro/nano scale material synthesis for enhanced mechanical properties at high temperature will result in more reliable high temperature materials for our country"s benefit.


Grant
Agency: Department of Defense | Branch: Air Force | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2012

ABSTRACT: A better understanding of the thermo-mechanical response, characteristics and properties of materials can lead to improved device performance as well as facilitate the design of new devices and materials for various applications. Although there has been significant progress in the development of micro/nanomechanical testing techniques and tools over the last decade, commercially available tools do not provide adequate capabilities for investigating thermo-mechanical behaviors of micro/nano-scale samples at elevated temperatures over 600 degrees C. In order to extend quantitative thermo-mechanical property measurements to higher temperature applications, we propose the development of a high-temperature microsample testing system capable of temperature control up to 1100 degrees C. The proposed thermo-mechanical testing system can perform uniaxial compression and tensile tests inside a scanning electron microscope or under a high-resolution optical microscope and record real-time in-situ video images of the material deformation behavior. In this SBIR we will develop a heating stage capable of sample heating up to 1100 degrees C, a transducer capable of applying a maximum force higher than 5 N and a maximum travel range of 0.5 mm, sample holders capable of mounting multiple microsamples for compression and tensile tests, and a piezo-motor stage for sample approach, alignment, and precise positioning. Successful completion of this SBIR development will provide a high-temperature microsample testing system offering unprecedented capabilities for exploring relationships between temperature, mechanical properties, and structural behavior of materials. BENEFIT: The proposed system is intended for pioneering studies of the thermo-mechanical characteristics of micro-scale samples at high temperatures up to 1100 degrees C. The realization of the proposed high-temperature microsample testing system will provide an unprecedented thermo-mechanical testing tool to researchers interested in the quantitative exploration of the relationship between temperature, mechanical property, and structural behavior of materials. Many materials and devices are used and operated at high temperatures. The thermo-mechanical reliability and performance of these materials need to be fully understood through proper mechanical testing. Increasing the temperature control capability of the mechanical testing system to cover the sample material/device operating temperature range is critical. Material reliability data related to wear, fatigue, and material strength obtained from thermo-mechanical testing can be used to estimate the possible operational temperature range and life span in the high temperature environment. The proposed mechanical test system will introduce many new scientific findings especially to researchers interested in high temperature materials such as metal alloys, composites, and ceramics routinely used at temperatures from 600 degrees C to 1100 degrees C. The proposed system is compatible with in-situ optical/electron microscopy which can be used to investigate structure-property correlations and the influence of pre-existing defects on the mechanical response of materials. In addition to optical and electron imaging, additional in-situ measurement techniques (e.g. electron backscattered diffraction (EBSD)) can also be employed during the high temperature mechanical test. Performing in-situ microscopy coupled with quantitative micro/nano-mechanical testing can provide a clear differentiation between the many possible causes of force or displacement transients which may include dislocation burst, phase transformation, shear banding or fracture onset. Understanding the fundamentals of micro/nano mechanics can facilitate the design of new devices for various applications and improve overall device performance. The SBIR company"s product user groups have expressed considerable interest in in-situ microscopy micro/nano-mechanical testing capabilities at elevated temperatures. From our experience as a pioneer in the development and commercialization of in-situ electron microscopy micro/nano-mechanical testers, material research laboratories such as university labs, government and military research institutions, and industrial R & D facilities are the potential customers of the proposed instrument. Based on the feedback from the users, we are confident that the proposed thermo-mechanical testing system can be marketed to many frontier researchers eager to perform unprecedented thermo-mechanical characterizations. Strong demand for the proposed instrument will be derived from researchers and industries whose applications are in advanced alloys, various composite materials, high temperature fuel cells, battery related materials and ceramics. Defense, energy, aerospace, automobile, semiconductor, and composites related industries and research institutions have a high degree of interest in thermo-mechanical tests at elevated temperatures above 600 degrees C. Measuring mechanical properties and investigating material behaviors at high temperatures can help to understand phase transformation behavior, failure mode, and reliability of the structures. This capability can have a tremendous economic impact as it provides a means for tailoring materials for an intended purpose based on their properties. Micro/nano scale material synthesis for enhanced mechanical properties at high temperature will result in more reliable high temperature materials for our country"s benefit.


Trademark
Hysitron Incorporated | Date: 2016-05-27

Test instruments for use in the field of studying quantitative mechanical properties and mechanical response of materials at nanometer and micrometer scale.

Loading Hysitron Incorporated collaborators
Loading Hysitron Incorporated collaborators