Hydrolina Biotech Pvt Ltd

Chennai, India

Hydrolina Biotech Pvt Ltd

Chennai, India
SEARCH FILTERS
Time filter
Source Type

— Global Spirulina Market report covers product scope, market overview, opportunities, risk, and driving force. It analyzes the top manufacturers of Spirulina, with sales, revenue, and price in 2016 and 2017. It also display the competitive situation among the top manufacturers, with sales, revenue and market share in 2016 and 2017. Companies profiled in this research report are DIC, Cyanotech, Parry Nutraceuticals, Hydrolina Biotech, King Dnarmsa, CBN, Green-A, Spirin, Chenghai Bao ER, Shenliu, SBD, Lanbao, Tianjian, Wuli Lvqi and Gangfa. Access this report at https://www.themarketreports.com/report/global-spirulina-market-by-manufacturers-countries-type-and-application-forecast-to-2022 To provide the historical development this report includes global market by regions, with sales, revenue and market share of Spirulina, for each region, from 2012 to 2017 and market analysis by type and application, with sales market share and growth rate by type, application, from 2012 to 2017. This report also analyze the key regions, with sales, revenue and market share by key countries in North America, Europe, Asia-Pacific, South America, and Middle East and Africa. Later, this report provides Spirulina Market forecast, by regions, type and application, with sales and revenue, from 2017 to 2022. In addition to above this report includes Spirulina sales channel, distributors, traders, dealers, and sum up with research findings and conclusion. Purchase this premium report at: https://www.themarketreports.com/report/buy-now/520931 Market Analysis by Regions • North America (USA, Canada and Mexico) • Europe (Germany, France, UK, Russia and Italy) • Asia-Pacific (China, Japan, Korea, India and Southeast Asia) • South America (Brazil, Argentina, Columbia etc.) • Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa) Inquire about this report at: https://www.themarketreports.com/report/ask-your-query/520931 For more information, please visit https://www.themarketreports.com/report/global-spirulina-market-by-manufacturers-countries-type-and-application-forecast-to-2022


Madhyastha H.,rugappa Chettiar Research Center | Madhyastha H.,University of Miyazaki | Vatsala T.M.,University of Miyazaki | Vatsala T.M.,Hydrolina Biotech Pvt Ltd
Indian Journal of Experimental Biology | Year: 2010

Isolation of three different active peptides from C-phycocyanin (C-pc) β chain of S. fussiformis and their biological properties are reported. Phycocyanin peptide β3 fraction 2 (cyanopeptide β3 2) facilitated both antioxidant and plasmid DNA strand scission prevention activity due to higher cysteine moieties in the isolated peptide. The peptide significantly scavenged the free radicals like 1-1,-diphenyl-2-picryl hydrazyl and ferric reducing ability of plasma, increased the absorbance values in reducing power and also showed the higher trolox equivalent antioxidant capacity values in total reactive antioxidant potentials assay. Cyanopeptide (5 2 also inhibited reactive oxygen species induced DNA pBR322 damage in dose dependent manner along with free radical scavenging properties suggesting the role in the DNA integrity which is also evident by DNA binding activity of peptide. In addition, the generation of reactive oxygen species (ROS) was dose dependent (10 and 20 ng/ml) and significantly quenched by cyanopeptide β2 in human fibroblast cell line TIG 3-20. In vitro cell scratch injury assay demonstrated the capacity of cyanopeptide P2 in cell migration in to wounded area suggesting fibroblast proliferation and migration. The results suggest that cyanopeptide β2 can be a free radical scavenger and effective peptide for future biomedical applications like wound healing, atherosclerosis, cell redox potential and hypoxia.


Vatsala T.M.,Hydrolina Biotech Pvt Ltd | Rekha R.,Hydrolina Biotech Pvt Ltd | Srividhya R.,Hydrolina Biotech Pvt Ltd
Indian Journal of Experimental Biology | Year: 2011

Rhodospirillum rubrum was grown under light anaerobic conditions with phycocyanin (C-pc) extracted from Spirulina platensis as the sole source of carbon and nitrogen. When grown under these conditions cellular components like lipids, carbohydrates, protein, carotenoids, bacteriochlorophyll were similar to the one grown with malic acid and ammonium chloride. Growth of R. rubrum increased with increase in concentration of C-pc (200 to 1000 mg/l). R. rubrum also utilized C-pc under dark anaerobic condition. With both malic acid and C-pc as carbon sources C-pc was consumed only after exhaustion of malic acid under light anaerobic condition. No aberration of cell morphology was seen under scanning electron microscope (SEM). R. rubrum utilized both phycocyanobilin and phycoprotein individually as well as in combination. When grown with 1000 mg/l of phycoprotein 450 mg/l of biomass was obtained, and with combination of phycocyanobilin (75 mg/l) and phycoprotein (925 mg/l) 610 mg/l of biomass was obtained. Phycocyanobilin alone did not inhibit the growth of R. rubrum. Utilization of C-pc with protease like activity was observed in plate assay. Protease like activity was also observed as zones around the colonies in plates containing sterilized casein, gelatin and filter sterilized bovine serum albumin. No amino acids were detected in the supernatant when analyzed with ninhydrin. Extracellular protease like activity was highest when C-pc was used as substrate (2.8 U/ml). Intracellular protease like activity was not detected in cell free extracts.


PubMed | Hydrolina Biotech Pvt Ltd
Type: Journal Article | Journal: Indian journal of experimental biology | Year: 2011

Rhodospirillum rubrum was grown under light anaerobic conditions with phycocyanin (C-pc) extracted from Spirulina platensis as the sole source of carbon and nitrogen. When grown under these conditions cellular components like lipids, carbohydrates, protein, carotenoids, bacteriochlorophyll were similar to the one grown with malic acid and ammonium chloride. Growth of R. rubrum increased with increase in concentration of C-pc (200 to 1000 mg/l). R. rubrum also utilized C-pc under dark anaerobic condition. With both malic acid and C-pc as carbon sources C-pc was consumed only after exhaustion of malic acid under light anaerobic condition. No aberration of cell morphology was seen under scanning electron microscope (SEM). R. rubrum utilized both phycocyanobilin and phycoprotein individually as well as in combination. When grown with 1000 mg/l of phycoprotein 450 mg/l of biomass was obtained, and with combination of phycocyanobilin (75 mg/l) and phycoprotein (925 mg/l) 610 mg/l of biomass was obtained. Phycocyanobilin alone did not inhibit the growth of R. rubrum. Utilization of C-pc with protease like activity was observed in plate assay. Protease like activity was also observed as zones around the colonies in plates containing sterilized casein, gelatin and filter sterilized bovine serum albumin. No amino acids were detected in the supernatant when analyzed with ninhydrin. Extracellular protease like activity was highest when C-pc was used as substrate (2.8 U/ml). Intracellular protease like activity was not detected in cell free extracts.

Loading Hydrolina Biotech Pvt Ltd collaborators
Loading Hydrolina Biotech Pvt Ltd collaborators