Time filter

Source Type

Research and Markets has announced the addition of the "Membrane Technology for Liquid and Gas Separations" report to their offering. The combined U.S. market for membranes used in liquid and gas separations should reach $4.6 billion by 2021 from $3.4 billion in 2016 at a compound annual growth rate (CAGR) of 6.2%, from 2016 to 2021. This report is primarily a study of the U.S. market, but due to the international presence of many industry participants, global activities are included where appropriate. Values are given in U.S. dollars, and revenue is counted at the manufacturer level. Forecasts are in constant U.S. dollars and growth rates are compounded. Five-year projections are provided for market activity and value. Industry structure, technological trends, pricing considerations, R&D, government regulations, company profiles and competitive technologies are included in the study. Only industrial-scale membrane products will be evaluated. No consumer products (i.e., point-of-use water systems) are included in the analysis. 1: Introduction - Study Goal And Objectives - Reasons For Doing The Study - Intended Audience - Scope Of Report - Information Sources 3: Industry Overview - History Of The Industry - Membrane Technology - Methods Of Filtration 4: Membrane Technology Types - Reverse Osmosis - Nanofiltration - Ultrafiltration - Microfiltration - Electrochemical Processes - Value Of The U.S. Market For Membrane Products Used In Liquid Separations By Membrane Type - Gas Separation - Pervaporation 5: Applications For Membrane Technology - Potable Water Production - Wastewater Treatment - Process-Water Treatment - Food And Beverage - Pharmaceuticals And Biotechnology - Other Industrial Liquid Separations - Industrial Gas Separations - 3M Purification - Advantec MFS Inc. - Air Liquide - Air Products And Chemicals Inc. - Alfa Laval - Amfor Inc. - Applied Membranes Inc. - Applied Membrane Technology - Aquamarijn Microfiltration BV - Aquaporin A/S - Asahi Kasei - Astom Corp. - Atech Innovations Gmbh - Berghof Filtrations Und Anlagentechnik Gmbh - BWT Group - Cameron International - Cantel Medical - Clean Membranes Inc. - Compact Membrane Systems - Daicen Membrane Systems Ltd. - Donaldson Co. - DOW Chemical Co. - Econity - Eltron Research & Development - Entegris Inc. - Evonik Industries AG - Evoqua Water Technologies - General Electric - Gea Westfalia Separator Group GMBH - Genesis Fueltech Inc. - GKN Sinter Metals Filters GMBH - Graver Technologies - Honeywell International - HY9 Corp. - Hydration Technology Innovations - Hydrogenics Corp. - Hyflux Ltd. - Imbrium Systems Corp. - Imtex Membranes Corp. - INGE GMBH - Innovative Gas Systems (Igs) - ITM Power Plc - ITN Nanovation AG - Jiangsu Jiuwu Hi-Tech Co. Ltd. - Koch Membrane Systems - Kubota Corp. - Lanxess AG - Lg Water Solutions - Mantec Technical Ceramics Ltd. - Markel Corp. - Media And Process Technology - Meissner Filtration Products Inc. - Membrana-Charlotte - Mempore Corp. - Membrane Technology & Research Inc. - Membranes International - Memstar Technology Ltd. - Microdyn-Nadir Gmbh - Milliporesigma - Mitsubishi Rayon Co. Ltd. - Mmf Maxflow Membran Filtration Gmbh - Mtb Technologies - Nanoasis - Natrix Separations - New Logic International - NGK Insulators Ltd. - Nitto Denko Corp. - Novasep Process - Oasys - Pall Corp. - Parker Hannifin Corp. - PCA-Polymerchemie Altmeier Gmbh Und Pccell Gmbh - Pentair Inc. - Permionics - Pervatech BV - Pionetics Corp. - Polyan Gmbh - Polymem S.A. - Porifera Inc. - Porvair Plc - Praxair Inc. - Prime Water Bvba - PWN Technologies - QUA Group - Reb Research And Consulting - Saes Pure Gas - Sartorius - Separation Dynamics Inc. - Simpore - Sinomem Technology. Ltd. - Snowpure Llc - Specialty Silicone Products Inc. - Spectrum Laboratories - Spintek Systems - Suez Environnement - Sulzer Chemtech Ltd. - Sumitomo Electric Industries - Synder Filtration - Synkera Technologies Inc. - T3 Scientific Llc - TAMI Industries - Tianjin Motimo Membrane Technology Ltd. - Tokuyama Corp. - Toray Industries - Toyobo Co. Ltd. - Trisep Corp. - UBE Industries - Ultura GMBH - Veolia Water - Voltea - W.L. Gore & Associates - Xylem - Yuasa Membrane Systems Co. Ltd. For more information about this report visit http://www.researchandmarkets.com/research/xwscxg/membrane


Dublin, Dec. 15, 2016 (GLOBE NEWSWIRE) -- Research and Markets has announced the addition of the "Membrane Technology for Liquid and Gas Separations" report to their offering. The combined U.S. market for membranes used in liquid and gas separations should reach $4.6 billion by 2021 from $3.4 billion in 2016 at a compound annual growth rate (CAGR) of 6.2%, from 2016 to 2021. This report is primarily a study of the U.S. market, but due to the international presence of many industry participants, global activities are included where appropriate. Values are given in U.S. dollars, and revenue is counted at the manufacturer level. Forecasts are in constant U.S. dollars and growth rates are compounded. Five-year projections are provided for market activity and value. Industry structure, technological trends, pricing considerations, R&D, government regulations, company profiles and competitive technologies are included in the study. Only industrial-scale membrane products will be evaluated. No consumer products (i.e., point-of-use water systems) are included in the analysis. Key Topics Covered: 1: Introduction - Study Goal And Objectives - Reasons For Doing The Study - Intended Audience - Scope Of Report - Information Sources 2: Executive Summary 3: Industry Overview - History Of The Industry - Membrane Technology - Methods Of Filtration 4: Membrane Technology Types - Reverse Osmosis - Nanofiltration - Ultrafiltration - Microfiltration - Electrochemical Processes - Value Of The U.S. Market For Membrane Products Used In Liquid Separations By Membrane Type - Gas Separation - Pervaporation 5: Applications For Membrane Technology - Potable Water Production - Wastewater Treatment - Process-Water Treatment - Food And Beverage - Pharmaceuticals And Biotechnology - Other Industrial Liquid Separations - Industrial Gas Separations 6: Patent Survey - Patents By Application - Patents By Company 7: Industry Structure - Mergers And Acquisitions - Company Profiles - 3M Purification - Advantec MFS Inc. - Air Liquide - Air Products And Chemicals Inc. - Alfa Laval - Amfor Inc. - Applied Membranes Inc. - Applied Membrane Technology - Aquamarijn Microfiltration BV - Aquaporin A/S - Asahi Kasei - Astom Corp. - Atech Innovations Gmbh - Berghof Filtrations Und Anlagentechnik Gmbh - BWT Group - Cameron International - Cantel Medical - Clean Membranes Inc. - Compact Membrane Systems - Daicen Membrane Systems Ltd. - Donaldson Co. - DOW Chemical Co. - Econity - Eltron Research & Development - Entegris Inc. - Evonik Industries AG - Evoqua Water Technologies - General Electric - Gea Westfalia Separator Group GMBH - Genesis Fueltech Inc. - GKN Sinter Metals Filters GMBH - Graver Technologies - Honeywell International - HY9 Corp. - Hydration Technology Innovations - Hydrogenics Corp. - Hyflux Ltd. - Imbrium Systems Corp. - Imtex Membranes Corp. - INGE GMBH - Innovative Gas Systems (Igs) - ITM Power Plc - ITN Nanovation AG - Jiangsu Jiuwu Hi-Tech Co. Ltd. - Koch Membrane Systems - Kubota Corp. - Lanxess AG - Lg Water Solutions - Mantec Technical Ceramics Ltd. - Markel Corp. - Media And Process Technology - Meissner Filtration Products Inc. - Membrana-Charlotte - Mempore Corp. - Membrane Technology & Research Inc. - Membranes International - Memstar Technology Ltd. - Microdyn-Nadir Gmbh - Milliporesigma - Mitsubishi Rayon Co. Ltd. - Mmf Maxflow Membran Filtration Gmbh - Mtb Technologies - Nanoasis - Natrix Separations - New Logic International - NGK Insulators Ltd. - Nitto Denko Corp. - Novasep Process - Oasys - Pall Corp. - Parker Hannifin Corp. - PCA-Polymerchemie Altmeier Gmbh Und Pccell Gmbh - Pentair Inc. - Permionics - Pervatech BV - Pionetics Corp. - Polyan Gmbh - Polymem S.A. - Porifera Inc. - Porvair Plc - Praxair Inc. - Prime Water Bvba - PWN Technologies - QUA Group - Reb Research And Consulting - Saes Pure Gas - Sartorius - Separation Dynamics Inc. - Simpore - Sinomem Technology. Ltd. - Snowpure Llc - Specialty Silicone Products Inc. - Spectrum Laboratories - Spintek Systems - Suez Environnement - Sulzer Chemtech Ltd. - Sumitomo Electric Industries - Synder Filtration - Synkera Technologies Inc. - T3 Scientific Llc - TAMI Industries - Tianjin Motimo Membrane Technology Ltd. - Tokuyama Corp. - Toray Industries - Toyobo Co. Ltd. - Trisep Corp. - UBE Industries - Ultura GMBH - Veolia Water - Voltea - W.L. Gore & Associates - Xylem - Yuasa Membrane Systems Co. Ltd. For more information about this report visit http://www.researchandmarkets.com/research/s5fpvr/membrane


Cath T.Y.,Colorado School of Mines | Elimelech M.,Yale University | McCutcheon J.R.,University of Connecticut | McGinnis R.L.,Oasys Water | And 10 more authors.
Desalination | Year: 2013

Osmotically driven membrane processes (ODMPs) such as forward osmosis (FO) and pressure retarded osmosis (PRO) are extensively investigated for utilization in a broad range of applications. In ODMPs, the operating conditions and membrane properties play more critical roles in mass transport and process performance than in pressure-driven membrane processes. Search of the literature reveals that ODMP membranes, especially newly developed ones, are tested under different temperatures, draw solution compositions and concentrations, flow rates, and pressures. In order to compare different membranes, it is important to develop standard protocols for testing of membranes for ODMPs. In this article we present a standard methodology for testing of ODMP membranes based on experience gained and operating conditions used in FO and PRO studies in recent years. A round-robin testing of two commercial membranes in seven independent laboratories revealed that water flux and membrane permeability coefficients were similar when participants performed the experiments and calculations using the same protocols. The thin film composite polyamide membrane exhibited higher water and salt permeability than the asymmetric cellulose-based membrane, but results with the high permeability thin-film composite membrane were more scattered. While salt rejection results in RO mode were relatively similar, salt permeability coefficients for both membranes in FO mode were more varied. Results suggest that high permeability ODMP membranes should be tested at lower hydraulic pressure in RO mode and that RO testing be conducted with the same membrane sample used for testing in FO mode. © 2012 Elsevier B.V.


Coday B.D.,Colorado School of Mines | Xu P.,New Mexico State University | Beaudry E.G.,Hydration Technology Innovations | Herron J.,Hydration Technology Innovations | And 3 more authors.
Desalination | Year: 2014

Global water scarcity and substantial challenges associated with treatment of complex and impaired liquid streams have advanced the development of forward osmosis (FO), which can successfully treat and recover water for beneficial reuse. Surging research and advancements in FO, a technology once unable to compete with conventional wastewater treatment processes, have identified its sweet spot: treatment and desalination of complex industrial streams, and especially oil and gas (O&G) exploration and production wastewaters. High salt concentrations, decentralized and transient operations, the presence of free and emulsified hydrocarbons, silts and clays leached from producing formations, and process additives common in O&G drilling wastewater and produced water render many common treatment technologies ineffective. Treatment and reuse of O&G wastewater, and other complex industrial streams, in a cost effective and environmentally sound manner is critical for sustainable industrial development and to meet increasingly stringent regulations. This review focuses on the successful development and demonstration of FO membrane treatment systems, supported by a review of bench-scale, pilot, and demonstration studies on treatment of O&G waste streams, landfill leachates, centrate from anaerobic digesters, activated sludge in membrane bioreactors, and liquid foods and beverages. Recent developments in membrane fabrication, system configurations, and draw solutions are briefly reviewed. © 2013 Elsevier B.V.


Hickenbottom K.L.,Colorado School of Mines | Hancock N.T.,Colorado School of Mines | Hutchings N.R.,Bear Creek Services | Appleton E.W.,Bear Creek Services | And 3 more authors.
Desalination | Year: 2013

To produce large volumes of newly discovered unconventional gas, hydraulic fracturing of wells is commonly practiced in basins where shale gas and coal bed methane are extracted. Hydraulic fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates larger volumes of contaminated wastewater. In this study, a novel application of forward osmosis (FO) was tested for treatment and reclamation of water from drilling waste to facilitate beneficial water reuse. By using FO, two major benefits were achieved: both the volume of the waste stream and the need for a fresh water source were greatly reduced. Results indicate that FO can achieve high rejection of organic and inorganic contaminants, membrane fouling was reversible, and that the process was able to effectively recover more than 80% of the water from the drilling waste. Osmotic backwashing was demonstrated to be an effective membrane cleaning technique; successfully removing fouling and restoring water flux. © 2012 Elsevier B.V.


Schultz W.L.,Hydration Technology Innovations
Pollution Engineering | Year: 2010

Forward Osmosis (FO), which directly achieves separation of water from a feed solution, has yielded promising results in recycling millions of gallons of fresh water used daily in the oil and gas drilling process. FO is driven by an osmotic pressure gradient, which draws out the higher concentration solution. Bear Creek Services has been putting a portable, scalable FO system into use as an oilfield wastewater reclamation system. The process is powered using a concentrated salt solution that is typically already used at the well site. The membrane in the FO system rejects 100 percent of viruses, bacteria and solids. It also rejects more than 90 percent of undesirable solutes including iron, calcium, barium, etc. The primary reclamation process is driven by alternative energy using an osmotic gradient drive. The system operates with a relatively small carbon footprint and eliminates the carbon footprint resulting from normal drilling wastewater disposal and transportation.


Coday B.D.,Colorado School of Mines | Miller-Robbie L.,Colorado School of Mines | Beaudry E.G.,Hydration Technology Innovations | Munakata-Marr J.,Colorado School of Mines | Cath T.Y.,Colorado School of Mines
Desalination | Year: 2015

The treatment of oil and gas (O&G) exploration wastewaters by forward osmosis (FO) could make water management in the O&G industry more sustainable. Specifically, recovery of pit water from well drilling operations and hydraulic fracturing could reduce the impacts associated with wastewater transportation, deep well disposal, and fresh water procurement for subsequent hydraulic fracturing operations. This study evaluates the environmental and economic impacts of FO for treatment of O&G pit water through comparative life cycle impact and costing assessments; the FO technology is evaluated when operated as an engineered osmosis system and as a stand-alone osmotic dilution process. Cradle-to-grave life cycle inventories are developed for each FO process and evaluated using ten environmental impact categories. The relative environmental impacts of FO are found to be comparable to the transportation and pumping energy alone required for deep well injection. At the current state of the technology, the energy demand of the FO systems when operated with no upstream pretreatment is the single greatest contributor to the negative environmental impacts. At 75% water recovery, FO can potentially reduce pit water management costs by nearly 60% compared to deep well disposal, and pit water transportation requirements can be reduced as much as 63%. © 2015 Elsevier B.V.

Loading Hydration Technology Innovations collaborators
Loading Hydration Technology Innovations collaborators