Entity

Time filter

Source Type

Hattiesburg, MS, United States

Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: ENV.2008.3.3.2.1. | Award Amount: 6.33M | Year: 2009

The main goal of PROSUITE is to develop a framework methodology, operational methods and tools for the sustainability assessment of current and future technologies over their life cycle, applicable to different stages of maturity. The project will apply the methodology for four technology cases with close consultation of the stakeholders involved, which includes cases from biorefineries, nanotechnology, information technologies, and carbon storage and sequestration. PROSUITE will show (i) how to combine technology forecasting methods with life cycle approaches, and (ii) how to develop and possibly combine the economic, environmental and social sustainability dimensions in a standardized, comprehensive, and broadly accepted way. PROSUITE will create a solid research basis for technology characterization, including the identification of decisive technology features, basic engineering modules for estimations of material flows and energy use, and learning curves. For the economic assessment, methods for the assessment for economic and sectoral impacts of novel technologies will be developed and combined with background data for scenario-based life-cycle inventory modelling. For the environmental assessment, state-of-the-art environment indicators will be proposed together with targeted method development for the assessment of geographically explicit land and water use impacts, metal toxicity and outdoor nanoparticle exposure. For the social assessment, a set of quantitative and qualitative social indicators will be selected via participatory approaches, setting the standard for future assessments. The use of various multicriteria assessment methods will be explored to aggegrate across indicators. The methods developed will be part of a decision support system, which will be output as open source modular software.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase I | Award Amount: 70.00K | Year: 2010

The proposed effort comprises a treatment combination using the platelet binding hemostatic capability of Nanoscopic Chemicals known as POSS trisilanols in combination with hyaluronic acid media, and antibiotic drugs in liquid and foam form. Mechanistically, liquid POSS trisilanols are injectable and serve to bind platelets to immediately stop bleeding. Subsequently the bound plateles release a multitude of natural growth factors while in the presence of a supplement of Hyaluronic acid (HA). Growth factors in combination with high amounts of HA are known to aid tissue repair and preservation.


Nanoscopic metallized and nonmetallized nanoscopic silicon containing agents including polyhedral oligomeric silsesquioxane and polyhedral oligomeric silicate provide radiation absorption and in situ formation of nanoscopic glass layers on material surfaces. These property improvements are useful in space-survivable materials, microelectronic packaging, and radiation absorptive paints, coatings and molded articles.


Patent
Hybrid Plastics Inc. | Date: 2014-03-25

A method of using metallized and nonmetallized nanostructured chemicals as surface and volume modification agents within polymers and on the surfaces of nano and macroscopic particulates and fillers. Because of their 0.5 nm-3.0 nm size, nanostructured chemicals can be utilized to greatly increase surface area, improve compatibility, and promote lubricity between surfaces at a length scale not previously attainable.


Patent
Hybrid Plastics Inc. | Date: 2010-02-02

The use of nanostructured chemicals based on polyhedral oligomeric silsesquioxanes (POSS) and polyhedral oligomeric silicates (POS) are used to control porosity in organic and inorganic media. The precisely defined nanoscopic dimensions of this class of chemicals enables porosity to be both created (increased) or reduced (decreased) as desired. The thermal and chemical stability of the POSS/POS nanostructures and the ability of these nano-building blocks to be selectively placed or rationally assembled with both inorganic and organic material mediums allow tailoring of porosity.

Discover hidden collaborations