Time filter

Source Type

Ho I.A.W.,Laboratory of Cancer Gene Therapy | Hui K.M.,Humprey Oei Institute of Cancer Research | Lam P.Y.P.,Laboratory of Cancer Gene Therapy | Lam P.Y.P.,National University of Singapore
Peptides | Year: 2010

Poor prognosis of high grade gliomas coupled with the difficulty of widespread delivery of therapeutic agents prompted the search into new molecular targets. Our aim is to isolate glioma-specific peptide sequences that can be used for targeted delivery of therapeutic drugs and imaging tracer to accurately demarcate tumor volume as a response to therapy. Herein, we describe the isolation and characterization of a glioma-specific peptide sequence, GL1, that interact exclusively with human glioma cells lines and primary glioma cells derived from human biopsy in vitro. Further analysis showed that the receptors for GL1 were located on the external side of the plasma membrane, where the GL1 peptides could bind stably up to a period of 180 min. More importantly, GL1 phages home specifically to human glioma xenograft when administered through tail vein, a phenomenon that was not observed when non-specific phages were used as control. Taken together, our results confirmed that GL1 could represent a novel peptide that target to tumor of glial origins, and could potentially be used as a targeting moiety for the conjugation of therapeutic drugs or diagnostic imaging radiolabels. © 2009 Elsevier Inc. All rights reserved.

Sia K.C.,Cancer Therapy and Research Center | Chong W.K.,Cancer Therapy and Research Center | Ho I.a.W.,Cancer Therapy and Research Center | Yulyana Y.,Cancer Therapy and Research Center | And 4 more authors.
Journal of Gene Medicine | Year: 2010

Background: Herpes simplex virus type-1 (HSV-1) amplicon vectors are attractive tools for gene transfer because of their large DNA insert capacity, their broad host range of vector transduction and a minimal immune response as a result of the absence of helper viruses during viral packaging. However, the transient gene expression remains a challenge for the translation of HSV-1 amplicon based therapeutic strategies to a clinical setting. Although oriP/EBV nuclear antigen (EBNA)-1 elements of Epstein-Barr virus (EBV) have been successfully employed to achieve prolonged transgene expression, little is known about the stability of the EBNA-1 elements in the context of HSV-1 amplicon viral vectors. Methods: We have generated HSV/EBV hybrid vectors expressing the mutant EBNA-1 gene with the luciferase reporter gene bicistronically to enable monitoring of EBNA-1 expression in real-time, both in vitro and in vivo. Results: The results obtained showed that the HSV/EBV hybrid vectors could mediate high levels of transgene expression (ranging from approximately two-fold to nine-fold) in primary human tumor cells and human bone marrow-derived mesenchymal stem cells compared to the control vector. Prolonged transgene expression could also be observed in primary patient-derived human hepatocellular carcinoma xenografts and in the mouse brain parenchyma up to a period of 17 and 365 days, respectively. Conclusions: Taken together, we have demonstrated that these hybrid vectors could be promising tools as carriers of therapeutic genes in mesenchymal stem cells or even provide an alternative non-integrating platform for the generation of induced pluripotent stem cells. © 2010 John Wiley & Sons, Ltd.

Ho I.A.W.,Hospital Drive | Miao L.,Hospital Drive | Sia K.C.,Hospital Drive | Wang G.Y.,Childrens Hospital Oakland Research Institute | And 3 more authors.
Gene Therapy | Year: 2010

Targeting cell infection using herpes simplex virus type 1 (HSV-1) vectors is a complicated issue as the process involves multiple interactions of viral envelope glycoproteins and cellular host surface proteins. In this study, we have inserted a human glioma-specific peptide sequence (denoted as MG11) into a peptide display HSV-1 amplicon vector replacing the heparan sulfate-binding domain of glycoprotein C (gC). The modified MG11:gC envelope recombinant vectors were subsequently packaged into virions in the presence of helper virus deleted for gC. Our results showed that the tropism of these HSV-1 recombinant virions was increased for human glioma cells in culture as compared with wild-type virions. The binding of these recombinant virions could also be blocked effectively by pre-incubating the cells with the glioma-specific peptide, indicating that MG11 peptide and the recombinant virions competed for the same or similar receptor-binding sites on the cell surface of human glioma cells. Furthermore, preferential homing of these virions was shown in xenograft glioma mouse model following intravascular delivery. Taken together, these results validated the hypothesis that HSV-1 binding to cells can be redirected to human gliomas through the incorporation of MG11 peptide sequence to the virions. © 2010 Macmillan Publishers Limited. All rights reserved.

Loading Humprey Oei Institute of Cancer Research collaborators
Loading Humprey Oei Institute of Cancer Research collaborators