Entity

Time filter

Source Type

Oskarshamn, Sweden

Schroder W.,University of Vechta | Holy M.,University of Vechta | Pesch R.,University of Vechta | Harmens H.,UK Center for Ecology and Hydrology | And 30 more authors.
Journal of Soils and Sediments | Year: 2010

Purpose: This study aimed at investigating correlations between heavy metal concentrations in mosses and modelled deposition values as well as other site-specific and regional characteristics to determine which factors primarily affect cadmium, lead and mercury concentrations in mosses. The resulting relationships could potentially be used to enhance the spatial resolution of heavy metal deposition maps across Europe. Materials and methods: Modelled heavy metal deposition data and data on the concentration of heavy metals in naturally growing mosses were integrated into a geographic information system and analysed by means of bivariate rank correlation analysis and multivariate decision trees. Modelled deposition data were validated annually with deposition measurements at up to 63 EMEP measurement stations within the European Monitoring and Evaluation Programme (EMEP), and mosses were collected at up to 7,000 sites at 5-year intervals between 1990 and 2005. Results and discussion: Moderate to high correlations were found between cadmium and lead concentrations in mosses and modelled atmospheric deposition of these metals: Spearman rank correlation coefficients were between 0.62 and 0.67, and 0.67 and 0.73 for cadmium and lead, respectively (p<0.001). Multivariate decision tree analyses showed that cadmium and lead concentrations in mosses were primarily determined by the atmospheric deposition of these metals, followed by emissions of the metals. Low to very low correlations were observed between mercury concentrations in mosses and modelled atmospheric deposition of mercury. According to the multivariate analyses, spatial variations of the mercury concentration in mosses was primarily associated with the sampled moss species and not with the modelled deposition, but regional differences in the atmospheric chemistry of mercury and corresponding interactions with the moss may also be involved. Conclusions: At least for cadmium and lead, concentrations in mosses are a valuable tool in determining and mapping the spatial variation in atmospheric deposition across Europe at a high spatial resolution. For mercury, more studies are needed to elucidate interactions of different chemical species with the moss. © 2010 Springer-Verlag. Source


Harmens H.,UK Center for Ecology and Hydrology | Norris D.A.,UK Center for Ecology and Hydrology | Cooper D.M.,UK Center for Ecology and Hydrology | Mills G.,UK Center for Ecology and Hydrology | And 23 more authors.
Environmental Pollution | Year: 2011

In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations (≥1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km × 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r 2 = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. © 2010 Published by Elsevier Ltd. Source


Harmens H.,UK Center for Ecology and Hydrology | Norris D.A.,UK Center for Ecology and Hydrology | Steinnes E.,Norwegian University of Science and Technology | Kubin E.,Finnish Forest Research Institute | And 30 more authors.
Environmental Pollution | Year: 2010

In recent decades, mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals. Since 1990, the European moss survey has been repeated at five-yearly intervals. Although spatial patterns were metal-specific, in 2005 the lowest concentrations of metals in mosses were generally found in Scandinavia, the Baltic States and northern parts of the UK; the highest concentrations were generally found in Belgium and south-eastern Europe. The recent decline in emission and subsequent deposition of heavy metals across Europe has resulted in a decrease in the heavy metal concentration in mosses for the majority of metals. Since 1990, the concentration in mosses has declined the most for arsenic, cadmium, iron, lead and vanadium (52-72%), followed by copper, nickel and zinc (20-30%), with no significant reduction being observed for mercury (12% since 1995) and chromium (2%). However, temporal trends were country-specific with sometimes increases being found. © 2010 Elsevier Ltd. All rights reserved. Source


Harmens H.,UK Center for Ecology and Hydrology | Ilyin I.,Meteorological Synthesizing Center East of | Mills G.,UK Center for Ecology and Hydrology | Aboal J.R.,University of Santiago de Compostela | And 33 more authors.
Environmental Pollution | Year: 2012

Previous analyses at the European scale have shown that cadmium and lead concentrations in mosses are primarily determined by the total deposition of these metals. Further analyses in the current study show that Spearman rank correlations between the concentration in mosses and the deposition modelled by the European Monitoring and Evaluation Programme (EMEP) are country and metal-specific. Significant positive correlations were found for about two thirds or more of the participating countries in 1990, 1995, 2000 and 2005 (except for Cd in 1990). Correlations were often not significant and sometimes negative in countries where mosses were only sampled in a relatively small number of EMEP grids. Correlations frequently improved when only data for EMEP grids with at least three moss sampling sites per grid were included. It was concluded that spatial patterns and temporal trends agree reasonably well between lead and cadmium concentrations in mosses and modelled atmospheric deposition. © 2012 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations