Humboldt University of Berlin

www.hu-berlin.de
Berlin, Germany

The Humboldt University of Berlin is one of Berlin's oldest universities, founded in 1810 as the University of Berlin by the liberal Prussian educational reformer and linguist Wilhelm von Humboldt, whose university model has strongly influenced other European and Western universities. From 1828 it was known as the Frederick William University , and later also as the Universität unter den Linden after its location. In 1949, it changed its name to Humboldt-Universität in honour of both its founder Wilhelm and his brother, geographer Alexander von Humboldt.In 2012, the Humboldt University of Berlin was one of eleven German universities to win in the German Universities Excellence Initiative, a national competition for universities organized by the German Federal Government. The university has educated 29 nobel prize winners and is considered one of the most prestigious universities in Europe overall as well as one of the most prestigious universities worldwide for arts and humanities. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Zug R.,Humboldt University of Berlin
Biological reviews of the Cambridge Philosophical Society | Year: 2015

Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread. However, even for reproductive parasites it can pay to enhance host fitness. Indeed, there is a recent upsurge of reports on Wolbachia-associated fitness benefits. Therefore, the question arises how such instances of mutualism are related to the phenotypes of reproductive parasitism. Here, we review the evidence of Wolbachia mutualisms in arthropods, including both facultative and obligate relationships, and critically assess their biological relevance. Although many studies report anti-pathogenic effects of Wolbachia, few actually prove these effects to be relevant to field conditions. We further show that Wolbachia frequently have beneficial and detrimental effects at the same time, and that reproductive manipulations and obligate mutualisms may share common mechanisms. These findings undermine the idea of a clear-cut distinction between Wolbachia mutualism and parasitism. In general, both facultative and obligate mutualisms can have a strong, and sometimes unforeseen, impact on the ecology and evolution of Wolbachia and their arthropod hosts. Acknowledging this mutualistic potential might be the key to a better understanding of some unresolved issues in the study of Wolbachia-host interactions. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.


Larkum M.,Humboldt University of Berlin
Trends in Neurosciences | Year: 2013

A basic feature of intelligent systems such as the cerebral cortex is the ability to freely associate aspects of perceived experience with an internal representation of the world and make predictions about the future. Here, a hypothesis is presented that the extraordinary performance of the cortex derives from an associative mechanism built in at the cellular level to the basic cortical neuronal unit: the pyramidal cell. The mechanism is robustly triggered by coincident input to opposite poles of the neuron, is exquisitely matched to the large- and fine-scale architecture of the cortex, and is tightly controlled by local microcircuits of inhibitory neurons targeting subcellular compartments. This article explores the experimental evidence and the implications for how the cortex operates. © 2012 Elsevier Ltd.


Rolfs M.,Humboldt University of Berlin | Szinte M.,Ludwig Maximilians University of Munich
Trends in Cognitive Sciences | Year: 2016

Our eyes rapidly scan visual scenes, displacing the projection on the retina with every move. Yet these frequent retinal image shifts do not appear to hamper vision. Two recent physiological studies shed new light on the role of attention in visual processing across saccadic eye movements. © 2016 Elsevier Ltd.


Grant
Agency: European Commission | Branch: H2020 | Program: ERA-NET-Cofund | Phase: SC5-15-2015 | Award Amount: 52.36M | Year: 2016

In the last decade a significant number of projects and programmes in different domains of environmental monitoring and Earth observation have generated a substantial amount of data and knowledge on different aspects related to environmental quality and sustainability. Big data generated by in-situ or satellite platforms are being collected and archived with a plethora of systems and instruments making difficult the sharing of data and knowledge to stakeholders and policy makers for supporting key economic and societal sectors. The overarching goal of ERA-PLANET is to strengthen the European Research Area in the domain of Earth Observation in coherence with the European participation to Group on Earth Observation (GEO) and the Copernicus. The expected impact is to strengthen the European leadership within the forthcoming GEO 2015-2025 Work Plan. ERA-PLANET will reinforce the interface with user communities, whose needs the Global Earth Observation System of Systems (GEOSS) intends to address. It will provide more accurate, comprehensive and authoritative information to policy and decision-makers in key societal benefit areas, such as Smart cities and Resilient societies; Resource efficiency and Environmental management; Global changes and Environmental treaties; Polar areas and Natural resources. ERA-PLANET will provide advanced decision support tools and technologies aimed to better monitor our global environment and share the information and knowledge in different domain of Earth Observation.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: REFLECTIVE-2-2015 | Award Amount: 2.71M | Year: 2016

Transmitting Contentious Cultural Heritages with the Arts: From Intervention to Co-Production (TRACES) aims to provide new directions for cultural heritage institutions to contribute productively to evolving European identity and reflexive Europeanization. To do so, it deploys an innovative ethnographic/artistic approach, focused on a wide range of types of contentious heritage. Attention to contentious heritage is crucial as it is especially likely to raise barriers to inclusivity and convivial relations, as well as to be difficult to transmit to the public. Transmitted effectively, however, it is potentially especially productive in raising critical reflection and contributing to reflexive Europeanization, in which European identity is shaped by self-awareness and on-going critical reflection. Through rigorous and creative in-depth artistic/ethnographic research, TRACES will provide a systematic analysis of the challenges and opportunities raised by transmitting contentious, awkward and difficult pasts. It will do so by setting up Creative Co-Productions (CCPs) in which artists, researchers, heritage agencies and stakeholders work together in longer term engagements to collaboratively research selected cases of contentious heritage and develop new participatory public interfaces. These will be documented and analysed, including educational research. These interfaces, which include online as well as physical exhibitions and other formats, are part of the significant output planned for TRACES, along with academic publications and a novel reflective Contentious Heritage Manual that will synthesise results to provide directions for future practical reflexive transmission of cultural heritage in Europe. TRACES is a multi-disciplinary team, bringing together established and emerging scholars, and providing high-level expertise, relevant experience and creative energy, to provide a rigorous and innovative approach to the transmission of European cultural heritage.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

Understanding the human brain is one of the greatest scientific challenges of our time. Such an understanding can provide profound insights into our humanity, leading to fundamentally new computing technologies, and transforming the diagnosis and treatment of brain disorders. Modern ICT brings this prospect within reach. The HBP Flagship Initiative (HBP) thus proposes a unique strategy that uses ICT to integrate neuroscience data from around the world, to develop a unified multi-level understanding of the brain and diseases, and ultimately to emulate its computational capabilities. The goal is to catalyze a global collaborative effort. During the HBPs first Specific Grant Agreement (SGA1), the HBP Core Project will outline the basis for building and operating a tightly integrated Research Infrastructure, providing HBP researchers and the scientific Community with unique resources and capabilities. Partnering Projects will enable independent research groups to expand the capabilities of the HBP Platforms, in order to use them to address otherwise intractable problems in neuroscience, computing and medicine in the future. In addition, collaborations with other national, European and international initiatives will create synergies, maximizing returns on research investment. SGA1 covers the detailed steps that will be taken to move the HBP closer to achieving its ambitious Flagship Objectives.


Rudiger S.,Humboldt University of Berlin
Physics Reports | Year: 2014

Cellular signaling operates in a noisy environment shaped by low molecular concentrations and cellular heterogeneity. For calcium release through intracellular channels-one of the most important cellular signaling mechanisms-feedback by liberated calcium endows fluctuations with critical functions in signal generation and formation. In this review it is first described, under which general conditions the environment makes stochasticity relevant, and which conditions allow approximating or deterministic equations. This analysis provides a framework, in which one can deduce an efficient hybrid description combining stochastic and deterministic evolution laws. Within the hybrid approach, Markov chains model gating of channels, while the concentrations of calcium and calcium binding molecules (buffers) are described by reaction-diffusion equations. The article further focuses on the spatial representation of subcellular calcium domains related to intracellular calcium channels. It presents analysis for single channels and clusters of channels and reviews the effects of buffers on the calcium release. For clustered channels, we discuss the application and validity of coarse-graining as well as approaches based on continuous gating variables (Fokker-Planck and chemical Langevin equations). Comparison with recent experiments substantiates the stochastic and spatial approach, identifies minimal requirements for a realistic modeling, and facilitates an understanding of collective channel behavior. At the end of the review, implications of stochastic and local modeling for the generation and properties of cell-wide release and the integration of calcium dynamics into cellular signaling models are discussed. © 2013.


Hoare B.,Humboldt University of Berlin
Nuclear Physics B | Year: 2015

We construct a two-parameter deformation of the Metsaev-Tseytlin action for supercosets with isometry group of the form Ĝ×Ĝ. The resulting action is classically integrable and is Poisson-Lie symmetric suggesting that the symmetry of the model is q-deformed, uqL(Ĝ) × uqR(Ĝ). Focusing on the cases relevant for strings moving in AdS3×S3×T4 and AdS3×S3×S3×S1, we analyze the corresponding deformations of the AdS3 and S3 metrics. We also construct a two-parameter q-deformation of the u(1) ∈ psu(1|1)2⋉u(1)⋉ℝ3-invariant R-matrix and closure condition, which underlie the light-cone gauge S-matrix and dispersion relation of the aforementioned string theories. With the appropriate identification of parameters, the near-BMN limit of the dispersion relation is shown to agree with that found from the deformed supercoset sigma model. © 2014 The Author. Published by Elsevier B.V. All rights reserved.


Meroz Y.,Harvard University | Sokolov I.M.,Humboldt University of Berlin
Physics Reports | Year: 2015

Subdiffusive processes have become a field of great interest in the last decades, due to amounting experimental evidence of subdiffusive behavior in complex systems, and especially in biological systems. Different physical scenarios leading to subdiffusion differ in the details of the dynamics. These differences are what allow to theoretically reconstruct the underlying physics from the results of observations, and will be the topic of this review. We review the main statistical analyses available today to distinguish between these scenarios, categorizing them according to the relevant characteristics. We collect the available tools and statistical tests, presenting them within a broader perspective. We also consider possible complications such as the subordination of subdiffusive mechanisms. Due to the advances in single particle tracking experiments in recent years, we focus on the relevant case of where the available experimental data is scant, at the level of single trajectories. © 2015 Elsevier B.V.


Grant
Agency: European Commission | Branch: H2020 | Program: ERC-ADG | Phase: ERC-ADG-2014 | Award Amount: 2.47M | Year: 2016

How could a molecular cancer therapy look like in 2040? In cancer, gene expression is deregulated due to amplification, mutation and translocation of genes. Next generation RNA sequencing provides us with the opportunity to identify the number and identity of the gene products aberrantly expressed in a patient. But do we have methods that take advantage of the personalized sequence data? In this research project we propose the idea to use the RNA molecules expressed upon disease-type gene expression as instructors for the chemical synthesis of drug-like molecules that cure the disease. Accordingly, drug-like molecules would only be formed in those cells that express the disease-specific RNA molecules. Such a personalized molecular therapy would eliminate side effects caused by unwanted perturbation of healthy cells. The idea to use cellular RNA molecules as triggers for drug synthesis requires methods that couple RNA recognition with a change of chemical reactivity. Reactive molecules must be able to read and translate the sequence of a RNA molecule into a drug-like output. We will develop mRNA-triggered reactions that i) proceed with turnover in template to cope with low mRNA copy numbers and ii) allow the single-step synthesis of highly active drug-like molecules to address deregulated protein targets inside cancer cells. To achieve this aim, we will advance chemical acyl transfer and alkylidene transfer reactions. The reactions on disease-specific mRNA will form peptides/peptidomimetics/small molecule-based kinase inhibitors which will induce apoptosis in cancer cells. We will target validated drug targets. Synergy between the nucleic acid and protein worlds will be harnessed. Furthermore, we will develop a RNA-promoted reaction with turnover beyond product inhibition. This will enable a transcriptome-activated photodynamic therapy. In a nutshell, we will develop a chemistry-based tool to hijack disease mRNA and rewire the cell death program.

Loading Humboldt University of Berlin collaborators
Loading Humboldt University of Berlin collaborators