Entity

Time filter

Source Type


Masson-Lecomte A.,Genetic and Molecular Epidemiology Group | Masson-Lecomte A.,University Paris Est Creteil | De Maturana E.L.,Genetic and Molecular Epidemiology Group | Goddard M.E.,Australian Department of Primary Industries and Fisheries | And 91 more authors.
Cancer Epidemiology Biomarkers and Prevention | Year: 2016

Background: Increasing evidence points to the role of tumor immunologic environment on urothelial bladder cancer prognosis. This effect might be partly dependent on the host genetic context. We evaluated the association of SNPs in inflammationrelated genes with non-muscle-invasive bladder cancer (NMIBC) risk-of-recurrence and risk-of-progression. Methods: We considered 822 NMIBC included in the SBC/ EPICURO Study followed-up >10 years. We selected 1,679 SNPs belonging to 251 inflammatory genes. The association of SNPs with risk-of-recurrence and risk-of-progression was assessed using Cox regression single-marker (SMM) and multimarker methods (MMM) Bayes A and Bayesian LASSO. Discriminative abilities of the models were calculated using the c index and validated with bootstrap cross-validation procedures. Results: While no SNP was found to be associated with risk-ofrecurrence using SMM, three SNPs in TNIP1, CD5, and JAK3 showed very strong association with posterior probabilities >90% using MMM. Regarding risk-of-progression, one SNP in CD3G was significantly associated using SMM (HR, 2.69; P = 1.55 × 10-5) and two SNPs in MASP1 and AIRE, showed a posterior probability ≥80% with MMM. Validated discriminative abilities of the models without and with the SNPs were 58.4% versus 60.5% and 72.1% versus 72.8% for risk-of-recurrence and risk-of-progression, respectively. Conclusions: Using innovative analytic approaches, we demonstrated that SNPs in inflammatory-related genes were associated with NMIBC prognosis and that they improve the discriminative ability of prognostic clinical models for NMIBC. Impact: This study provides proof of concept for the joint effect of genetic variants in improving the discriminative ability of clinical prognostic models. The approach may be extended to other diseases. © 2016 American Association for Cancer Research. Source


Apellaniz-Ruiz M.,Hereditary Endocrine Cancer Group | Gallego C.,Hospital Universitari Mutua Of Terrassa | Ruiz-Pinto S.,Human Genotyping CEGEN Unit | Carracedo A.,Fundacion Publica de Medicina Xenomica SERGAS | And 2 more authors.
Drug Metabolism and Personalized Therapy | Year: 2016

In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015. © 2016 by De Gruyter. Source


Cash T.P.,Tumour Suppression Group | Pita G.,Human Genotyping CEGEN Unit | Dominguez O.,Genomics Core Unit | Alonso M.R.,Human Genotyping CEGEN Unit | And 10 more authors.
Aging Cell | Year: 2014

Exceptional longevity (EL) is a rare phenotype that can cluster in families, and co-segregation of genetic variation in these families may point to candidate genes that could contribute to extended lifespan. In this study, for the first time, we have sequenced a total of seven exomes from exceptionally long-lived siblings (probands ≥ 103 years and at least one sibling ≥ 97 years) that come from three separate families. We have focused on rare functional variants (RFVs) which have ≤ 1% minor allele frequency according to databases and that are likely to alter gene product function. Based on this, we have identified one candidate longevity gene carrying RFVs in all three families, APOB. Interestingly, APOB is a component of lipoprotein particles together with APOE, and variants in the genes encoding these two proteins have been previously associated with human longevity. Analysis of nonfamilial EL cases showed a trend, without reaching statistical significance, toward enrichment of APOB RFVs. We have also identified candidate longevity genes shared between two families (5-13) or within individual families (66-156 genes). Some of these genes have been previously linked to longevity in model organisms, such as PPARGC1A, NRG1, RAD52, RAD51, NCOR1, and ADCY5 genes. This work provides an initial catalog of genes that could contribute to exceptional familial longevity. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. Source


Zurita E.,CSIC - National Center for Biotechnology | Zurita E.,Research Center Biomedica En Red Of Enfermedades Raras Ciberer | Chagoyen M.,CSIC - National Center for Biotechnology | Cantero M.,CSIC - National Center for Biotechnology | And 12 more authors.
Transgenic Research | Year: 2011

Mice from the inbred C57BL/6 strain have been commonly used for the generation and analysis of transgenic and knockout animal models. However, several C57BL/6 substrains exist, and these are genetically and phenotypically different. In addition, each of these substrains can be purchased from different animal providers and, in some cases, they have maintained their breeding stocks separated for a long time, allowing genetic differences to accumulate due to individual variability and genetic drift. With the aim of describing the differences in the genotype of several C57BL/6 substrains, we applied the Illumina® Mouse Medium Density Linkage Mapping panel, with 1,449 single nucleotide polymorphisms (SNPs), to individuals from ten C57BL/6-related strains: C57BL/6JArc, C57BL/6J from The Jackson Lab, C57BL/6J from Crl, C57BL6/JRccHsd, C57BL/6JOlaHsd, C57BL/6JBomTac, B6(Cg)-Tyrc-2j/J, C57BL/6NCrl, C57BL/6NHsd and C57BL/6NTac. Twelve SNPs were found informative to discriminate among the mouse strains considered. Mice derived from the original C57BL/6J: C57BL/6JArc, C57BL/6J from The Jackson Lab and C57BL/6J from Crl, were indistinguishable. Similarly, all C57BL/6N substrains displayed the same genotype, whereas the additional substrains showed intermediate cases with substrain-specific polymorphisms. These results will be instrumental for the correct genetic monitoring and appropriate mouse colony handling of different transgenic and knockout mice produced in distinct C57BL/6 inbred substrains. © 2010 Springer Science+Business Media B.V. Source


Candido dos Reis F.J.,University of Cambridge | Candido dos Reis F.J.,University of Sao Paulo | Lynn S.,University of Oxford | Ali H.R.,Cancer Research UK Research Institute | And 45 more authors.
EBioMedicine | Year: 2015

Background: Citizen science, scientific research conducted by non-specialists, has the potential to facilitate biomedical research using available large-scale data, however validating the results is challenging. The Cell Slider is a citizen science project that intends to share images from tumors with the general public, enabling them to score tumor markers independently through an internet-based interface. Methods: From October 2012 to June 2014, 98,293 Citizen Scientists accessed the Cell Slider web page and scored 180,172 sub-images derived from images of 12,326 tissue microarray cores labeled for estrogen receptor (ER). We evaluated the accuracy of Citizen Scientist's ER classification, and the association between ER status and prognosis by comparing their test performance against trained pathologists. Findings: The area under ROC curve was 0.95 (95% CI 0.94 to 0.96) for cancer cell identification and 0.97 (95% CI 0.96 to 0.97) for ER status. ER positive tumors scored by Citizen Scientists were associated with survival in a similar way to that scored by trained pathologists. Survival probability at 15. years were 0.78 (95% CI 0.76 to 0.80) for ER-positive and 0.72 (95% CI 0.68 to 0.77) for ER-negative tumors based on Citizen Scientists classification. Based on pathologist classification, survival probability was 0.79 (95% CI 0.77 to 0.81) for ER-positive and 0.71 (95% CI 0.67 to 0.74) for ER-negative tumors. The hazard ratio for death was 0.26 (95% CI 0.18 to 0.37) at diagnosis and became greater than one after 6.5. years of follow-up for ER scored by Citizen Scientists, and 0.24 (95% CI 0.18 to 0.33) at diagnosis increasing thereafter to one after 6.7 (95% CI 4.1 to 10.9) years of follow-up for ER scored by pathologists. Interpretation: Crowdsourcing of the general public to classify cancer pathology data for research is viable, engages the public and provides accurate ER data. Crowdsourced classification of research data may offer a valid solution to problems of throughput requiring human input. © 2015. Source

Discover hidden collaborations