Human Genotyping Unit CeGen

Madrid, Spain

Human Genotyping Unit CeGen

Madrid, Spain
Time filter
Source Type

Comino-Mendez I.,Hereditary Endocrine Cancer Group | de Cubas A.A.,Hereditary Endocrine Cancer Group | Bernal C.,Hospital 12 Of Octubre | Alvarez-Escola C.,Hospital Universitario La Paz | And 24 more authors.
Human Molecular Genetics | Year: 2013

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are chromaffin-cell tumors that arise from the adrenal medulla and extra-adrenal paraganglia, respectively. The dysfunction of genes involved in the cellular response to hypoxia, such as VHL, EGL nine homolog 1, and the succinate dehydrogenase (SDH) genes, leads to a direct abrogation of hypoxia inducible factor (HIF) degradation, resulting in a pseudo-hypoxic state implicated in PCC/PGL development. Recently, somatic post-zygotic mutations in EPAS1 (HIF2A) have been found in patients with multiple PGLs and congenital erythrocytosis. We assessed 41 PCCs/ PGLs for mutations in EPAS1 and herein describe the clinical, molecular and genetic characteristics of the 7 patients found to carry somatic EPAS1 mutations; 4 presented with multiple PGLs (3 of them also had congenital erythrocytosis), whereas 3 were single sporadic PCC/PGL cases. Gene expression analysis of EPAS1-mutated tumors revealed similar mRNA EPAS1 levels to those found in SDH-gene- and VHL-mutated cases and a significant up-regulation of two hypoxia-induced genes (PCSK6 and GNA14). Interestingly, single nucleotide polymorphism array analysis revealed an exclusive gain of chromosome 2p in three EPAS1-mutated tumors. Furthermore, multiplex-PCR screening for small rearrangements detected a specific EPAS1 gain in another EPAS1-mutated tumor and in three non-EPAS1-mutated cases. The finding that EPAS1 is involved in the sporadic presentation of the disease not only increases the percentage of PCCs/PGLs with known driver mutations, but also highlights the relevance of studying other hypoxia-related genes in apparently sporadic tumors. Finally, the detection of a specific copy number alteration affecting chromosome 2p in EPAS1-mutated tumors may guide the genetic diagnosis of patients with this disease. © The Author 2013. Published by Oxford University Press. All rights reserved.

PubMed | University of Seville, Autonomous University of Barcelona, CIBER ISCIII, Baylor College of Medicine and 6 more.
Type: Journal Article | Journal: EMBO molecular medicine | Year: 2016

Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb-girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O-glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and invivo experiments demonstrated that the mutation reduces O-glucosyltransferase activity on Notch and impairs muscle development. Muscles from patients revealed decreased Notch signaling, dramatic reduction in satellite cell pool and a muscle-specific -dystroglycan hypoglycosylation not present in patients fibroblasts. Primary myoblasts from patients showed slow proliferation, facilitated differentiation, and a decreased pool of quiescent PAX7

Comino-Mendez I.,Hereditary Endocrine Cancer Group | Comino-Mendez I.,Research Center Biomedica En Red Of Enfermedades Raras Ciberer | Gracia-Aznarez F.J.,Research Center Biomedica En Red Of Enfermedades Raras Ciberer | Gracia-Aznarez F.J.,Human Genetics Group | And 33 more authors.
Nature Genetics | Year: 2011

Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential. © 2011 Nature America, Inc. All rights reserved.

Wheeler H.E.,University of Chicago | Gonzalez-Neira A.,Human Genotyping Unit CeGen | Pita G.,Human Genotyping Unit CeGen | De La Torre-Montero J.-C.,University of San Carlos | And 5 more authors.
Pharmacogenetics and Genomics | Year: 2014

OBJECTIVE: A primary challenge in identifying replicable pharmacogenomic markers from clinical genomewide association study (GWAS) trials in oncology is the difficulty in performing a second large clinical trial with the same drugs and dosage regimen. We sought to overcome this challenge by incorporating GWAS results from cell-based studies using the same chemotherapy as a clinical cohort. METHODS: In this study, we test whether the overlap between genetic variants identified in a preclinical study and a clinical study on capecitabine is more than expected by chance. A GWAS of capecitabine-induced cytotoxicity was performed in 164 lymphoblastoid cell lines derived from the CEU HapMap population and compared with a GWAS of hand-foot syndrome (HFS), the most frequent capecitabine-induced adverse drug reaction, in Spanish breast and colorectal cancer patients (n=160) treated with capecitabine. RESULTS: We observed an overlap of 16 single nucleotide polymorphisms associated with capecitabine-induced cytotoxicity (P<0.001) in lymphoblastoid cell lines and HFS (P<0.05) in patients, which is a greater overlap than expected by chance (genotype-phenotype permutation empirical P=0.015). Ten tag single nucleotide polymorphisms, which cover the overlap loci, were genotyped in a second patient cohort (n=85) and one of them, rs9936750, was associated with capecitabine-induced HFS (P=0.0076). CONCLUSION: The enrichment results imply that cellular models of capecitabine-induced cytotoxicity may capture components of the underlying polygenic architecture of related toxicities in patients. © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins.

PubMed | Hospital Universitario La Paz, Instituto Ortopedico Rizzoli, Charité - Medical University of Berlin, University Hospital Freiburg and 6 more.
Type: Journal Article | Journal: Annals of oncology : official journal of the European Society for Medical Oncology | Year: 2016

Despite the effectiveness of current treatment protocols for Ewing sarcoma (ES), many patients still experience relapse, and survival following recurrence is <15%. We aimed to identify genetic variants that predict treatment outcome in children diagnosed with ES.We carried out a pharmacogenetic study of 384 single-nucleotide polymorphisms (SNPs) in 24 key transport or metabolism genes relevant to drugs used to treat in pediatric patients (<30 years) with histologically confirmed ES. We studied the association of genotypes with tumor response and overall survival (OS) in a discovery cohort of 106 Spanish children, with replication in a second cohort of 389 pediatric patients from across Europe.We identified associations with OS (P < 0.05) for three SNPs in the Spanish cohort that were replicated in the European cohort. The strongest association observed was with rs7190447, located in the ATP-binding cassette subfamily C member 6 (ABCC6) gene [discovery: hazard ratio (HR) = 14.30, 95% confidence interval (CI) = 1.53-134, P = 0.020; replication: HR = 9.28, 95% CI = 2.20-39.2, P = 0.0024] and its correlated SNP rs7192303, which was predicted to have a plausible regulatory function. We also replicated associations with rs4148737 in the ATP-binding cassette subfamily B member 1 (ABCB1) gene (discovery: HR = 2.96, 95% CI = 1.08-8.10, P = 0.034; replication: HR = 1.60, 95% CI = 1.05-2.44, P = 0.029), which we have previously found to be associated with poorer OS in pediatric osteosarcoma patients, and rs11188147 in cytochrome P450 family 2 subfamily C member 8 gene (CYP2C8) (discovery : HR = 2.49, 95% CI = 1.06-5.87, P = 0.037; replication: HR = 1.77, 95% CI = 1.06-2.96, P = 0.030), an enzyme involved in the oxidative metabolism of the ES chemotherapeutic agents cyclophosphamide and ifosfamide. None of the associations with tumor response were replicated.Using an integrated pathway-based approach, we identified polymorphisms in ABCC6, ABCB1 and CYP2C8 associated with OS. These associations were replicated in a large independent cohort, highlighting the importance of pharmacokinetic genes as prognostic markers in ES.

Rosmarin D.,Oxford Genetics | Rosmarin D.,University of Oxford | Palles C.,Oxford Genetics | Pagnamenta A.,Oxford Genetics | And 21 more authors.
Gut | Year: 2015

Objective: Capecitabine is an oral 5-fluorouracil (5-FU) pro-drug commonly used to treat colorectal carcinoma and other tumours. About 35% of patients experience dose-limiting toxicity. The few proven genetic biomarkers of 5-FU toxicity are rare variants and polymorphisms, respectively, at candidate loci dihydropyrimidine dehydrogenase (DPYD) and thymidylate synthase (TYMS).Design: We investigated 1456 polymorphisms and rare coding variants near 25 candidate 5-FU pathway genes in 968 UK patients from the QUASAR2 clinical trial.Results: We identified the first common DPYD polymorphisms to be consistently associated with capecitabine toxicity, rs12132152 (toxicity allele frequency (TAF)=0.031, OR=3.83, p=4.31×10-6) and rs12022243 (TAF=0.196, OR=1.69, p=2.55×10-5). rs12132152 was particularly strongly associated with hand-foot syndrome (OR=6.1, p=3.6×10-8). The rs12132152 and rs12022243 associations were independent of each other and of previously reported DPYD toxicity variants. Next-generation sequencing additionally identified rare DPYD variant p.Ala551Thr in one patient with severe toxicity. Using functional predictions and published data, we assigned p.Ala551Thr as causal for toxicity. We found that polymorphism rs2612091, which lies within an intron of ENOSF1, was also associated with capecitabine toxicity (TAF=0.532, OR=1.59, p=5.28×10-6). ENSOF1 is adjacent to TYMS and there is a poorly characterised regulatory interaction between the two genes/proteins. Unexpectedly, rs2612091 fully explained the previously reported associations between capecitabine toxicity and the supposedly functional TYMS variants, 5′ VNTR 2R/3R and 3′UTR 6 bp ins-del. rs2612091 genotypes were, moreover, consistently associated with ENOSF1 mRNA levels, but not with TYMS expression.Conclusions: DPYD harbours rare and common capecitabine toxicity variants. The toxicity polymorphism in the TYMS region may actually act through ENOSF1.

Caronia D.,Human Genotyping Unit CeGen | Martin M.,Hospital Universitario Gregorio Maranon | Sastre J.,Hospital Universitario San Carlos | De La Torre J.,Hospital Universitario San Carlos | And 8 more authors.
Clinical Cancer Research | Year: 2011

Purpose: Hand-foot syndrome (HFS) is one of the most relevant dose-limiting adverse effects of capecitabine, an oral prodrug of 5-fluorouracil used in the standard treatment of breast and colorectal cancer. We investigated the association between grade 3 HFS and genetic variations in genes involved in capecitabine metabolism. Experimental Design: We genotyped a total of 13 polymorphisms in the carboxylesterase 2 (CES2) gene, the cytidine deaminase (CDD) gene, the thymidine phosphorylase (TP) gene, the thymidylate synthase (TS) gene, and the dihydropyrimidine dehydrogenase (DPD) gene in 130 patients treated with capecitabine. We correlated these polymorphisms with susceptibility to HFS. Results: We found an association of HFS appearance with rs532545 located in the promoter region of CDD (OR=2.02, 95% CI=1.02-3.99, P=0.039). Because we found no association between the rs532545 genotype and CDD mRNA expression in Epstein-Barr virus lymphoblastoid cells, we explored additional genetic variations across the CDD promoter. We found an insertion, rs3215400, in linkage disequilibrium with rs532545 (D′ = 0.92), which was more clearly associated with HFS (OR = 0.51, 95% CI = 0.27-0.95, P = 0.028) in patients and with total CDD gene expression (P = 0.004) in lymphoblastoid cells. In silico analysis suggested that this insertion might create a binding site for the transcriptional regulator E2F. Using a SNaPshot assay in lymphoblastoid cells, we observed a 5.7-fold increased allele-specific mRNA expression from the deleted allele. Conclusions: The deleted allele of rs3215400 shows an increased allele-specific expression and is significantly associated with an increased risk of capecitabine-induced HFS. ©2011 AACR.

Caronia D.,Human Genotyping Unit CeGen | Patino-Garcia A.,University of Pamplona | Perez-Martinez A.,Universitary Childrens Hospital Nino Jesus | Pita G.,Human Genotyping Unit CeGen | And 8 more authors.
PLoS ONE | Year: 2011

Background: Standard treatment for osteosarcoma patients consists of a combination of cisplatin, adriamycin, and methotrexate before surgical resection of the primary tumour, followed by postoperative chemotherapy including vincristine and cyclophosphamide. Unfortunately, many patients still relapse or suffer adverse events. We examined whether common germline polymorphisms in chemotherapeutic transporter and metabolic pathway genes of the drugs used in standard osteosarcoma treatment may predict treatment response. Methodology/Principal Findings: In this study we screened 102 osteosarcoma patients for 346 Single Nucleotide Polymorphisms (SNPs) and 2 Copy Number Variants (CNVs) in 24 genes involved in the metabolism or transport of cisplatin, adriamycin, methotrexate, vincristine, and cyclophosphamide. We studied the association of the genotypes with tumour response and overall survival. We found that four SNPs in two ATP-binding cassette genes were significantly associated with overall survival: rs4148416 in ABCC3 (per-allele HR = 8.14, 95%CI = 2.73-20.2, p-value = 5.1×10 -5), and three SNPs in ABCB1, rs4148737 (per-allele HR = 3.66, 95%CI = 1.85-6.11, p-value = 6.9×10 -5), rs1128503 and rs10276036 (r 2 = 1, per-allele HR = 0.24, 95%CI = 0.11-0.47 p-value = 7.9×10 -5). Associations with these SNPs remained statistically significant after correction for multiple testing (all corrected p-values [permutation test] ≤0.03). Conclusions: Our findings suggest that these polymorphisms may affect osteosarcoma treatment efficacy. If these associations are independently validated, these variants could be used as genetic predictors of clinical outcome in the treatment of osteosarcoma, helping in the design of individualized therapy. © 2011 Caronia et al.

Postel-Vinay S.,French Institute of Health and Medical Research | Postel-Vinay S.,University Pierre and Marie Curie | Veron A.S.,French Institute of Health and Medical Research | Tirode F.,French Institute of Health and Medical Research | And 28 more authors.
Nature Genetics | Year: 2012

Ewing sarcoma, a pediatric tumor characterized by EWSR1-ETS fusions, is predominantly observed in populations of European ancestry. We performed a genome-wide association study (GWAS) of 401 French individuals with Ewing sarcoma, 684 unaffected French individuals and 3,668 unaffected individuals of European descent and living in the United States. We identified candidate risk loci at 1p36.22, 10q21 and 15q15. We replicated these loci in two independent sets of cases and controls. Joint analysis identified associations with rs9430161 (P = 1.4 × 10 -20; odds ratio (OR) = 2.2) located 25 kb upstream of TARDBP, rs224278 (P = 4.0 × 10 -17; OR = 1.7) located 5 kb upstream of EGR2 and, to a lesser extent, rs4924410 at 15q15 (P = 6.6 × 10 -9; OR = 1.5). The major risk haplotypes were less prevalent in Africans, suggesting that these loci could contribute to geographical differences in Ewing sarcoma incidence. TARDBP shares structural similarities with EWSR1 and FUS, which encode RNA binding proteins, and EGR2 is a target gene of EWSR1-ETS. Variants at these loci were associated with expression levels of TARDBP, ADO (encoding cysteamine dioxygenase) and EGR2. © 2012 Nature America, Inc. All rights reserved.

Loading Human Genotyping Unit CeGen collaborators
Loading Human Genotyping Unit CeGen collaborators