Time filter

Source Type

Baglietto L.,Cancer Epidemiology Center | Lindor N.M.,Cancer Epidemiology Center | Dowty J.G.,University of Melbourne | White D.M.,Mayo Medical School | And 36 more authors.
Journal of the National Cancer Institute | Year: 2010

Background: Germline mutations in MSH6 account for 10%-20% of Lynch syndrome colorectal cancers caused by hereditary DNA mismatch repair gene mutations. Because there have been only a few studies of mutation carriers, their cancer risks are uncertain. Methods: We identified 113 families of MSH6 mutation carriers from five countries that we ascertained through family cancer clinics and population-based cancer registries. Mutation status, sex, age, and histories of cancer, polypectomy, and hysterectomy were sought from 3104 of their relatives. Age-specific cumulative risks for carriers and hazard ratios (HRs) for cancer risks of carriers, compared with those of the general population of the same country, were estimated by use of a modified segregation analysis with appropriate conditioning depending on ascertainment. Results: For MSH6 mutation carriers, the estimated cumulative risks to ages 70 and 80 years, respectively, were as follows: for colorectal cancer, 22% (95% confidence interval [CI]=14% to 32%) and 44% (95% CI=28% to 62%) for men and 10% (95% CI=5% to 17%) and 20% (95% CI=11% to 35%) for women; for endometrial cancer, 26% (95% CI=18% to 36%) and 44% (95% CI=30% to 58%); and for any cancer associated with Lynch syndrome, 24% (95% CI=16% to 37%) and 47% (95% CI=32% to 66%) for men and 40% (95% CI=32% to 52%) and 65% (95% CI=53% to 78%) for women. Compared with incidence for the general population, MSH6 mutation carriers had an eightfold increased incidence of colorectal cancer (HR=7.6, 95% CI=5.4 to 10.8), which was independent of sex and age. Women who were MSH6 mutation carriers had a 26-fold increased incidence of endometrial cancer (HR=25.5, 95% CI=16.8 to 38.7) and a sixfold increased incidence of other cancers associated with Lynch syndrome (HR=6.0, 95% CI=3.4 to 10.7).ConclusionWe have obtained precise and accurate estimates of both absolute and relative cancer risks for MSH6 mutation carriers. The Author 2009. Published by Oxford University Press.2010 © The Author 2009. Published by Oxford University Press. Source

As tyrosine kinase inhibitors (TKIs) fail to induce long-term response in blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL), novel therapies targeting leukemia-dysregulated pathways are necessary. Exportin-1 (XPO1), also known as chromosome maintenance protein 1, regulates cell growth and differentiation by controlling the nucleocytoplasmic trafficking of proteins and RNAs, some of which are aberrantly modulated in BCR-ABL1(+) leukemias. Using CD34(+) progenitors from CML, B-ALL, and healthy individuals, we found that XPO1 expression was markedly increased, mostly in a TKI-sensitive manner, in CML-BC and Ph(+) B-ALL. Notably, XPO1 was also elevated in Ph(-) B-ALL. Moreover, the clinically relevant XPO1 inhibitor KPT-330 strongly triggered apoptosis and impaired the clonogenic potential of leukemic, but not normal, CD34(+) progenitors, and increased survival of BCR-ABL1(+) mice, 50% of which remained alive and, mostly, became BCR-ABL1 negative. Moreover, KPT-330 compassionate use in a patient with TKI-resistant CML undergoing disease progression significantly reduced white blood cell count, blast cells, splenomegaly, lactate dehydrogenase levels, and bone pain. Mechanistically, KPT-330 altered the subcellular localization of leukemia-regulated factors including RNA-binding heterogeneous nuclear ribonucleoprotein A1 and the oncogene SET, thereby inducing reactivation of protein phosphatase 2A tumor suppressor and inhibition of BCR-ABL1 in CML-BC cells. Because XPO1 is important for leukemic cell survival, KPT-330 may represent an alternative therapy for TKI-refractory Ph(+) leukemias. Source

FTY720 (Fingolimod, Gilenya) is a sphingosine analog used as an immunosuppressant in multiple sclerosis patients. FTY720 is also a potent protein phosphatase 2A (PP2A)-activating drug (PAD). PP2A is a tumor suppressor found inactivated in different types of cancer. We show here that PP2A is inactive in polycythemia vera (PV) and other myeloproliferative neoplasms characterized by the expression of the transforming Jak2(V617F) oncogene. PP2A inactivation occurs in a Jak2(V617F) dose/kinase-dependent manner through the PI-3Kγ-PKC-induced phosphorylation of the PP2A inhibitor SET. Genetic or PAD-mediated PP2A reactivation induces Jak2(V617F) inactivation/downregulation and impairs clonogenic potential of Jak2(V617F) cell lines and PV but not normal CD34(+) progenitors. Likewise, FTY720 decreases leukemic allelic burden, reduces splenomegaly, and significantly increases survival of Jak2(V617F) leukemic mice without adverse effects. Mechanistically, we show that in Jak2(V617F) cells, FTY720 antileukemic activity requires neither FTY720 phosphorylation (FTY720-P) nor SET dimerization or ceramide induction but depends on interaction with SET K209. Moreover, we show that Jak2(V617F) also utilizes an alternative sphingosine kinase-1-mediated pathway to inhibit PP2A and that FTY720-P, acting as a sphingosine-1-phosphate-receptor-1 agonist, elicits signals leading to the Jak2-PI-3Kγ-PKC-SET-mediated PP2A inhibition. Thus, PADs (eg, FTY720) represent suitable therapeutic alternatives for Jak2(V617F) MPNs. Source

He H.,Human Cancer Genetics Program | Liyanarachchi S.,Human Cancer Genetics Program | Nagy R.,Human Cancer Genetics Program | Li W.,Human Cancer Genetics Program | And 20 more authors.
Journal of Clinical Endocrinology and Metabolism | Year: 2013

Background: Papillary thyroid carcinoma (PTC) shows high heritability, yet efforts to find predisposing genes have been largely negative. Objectives: The objective of this study was to identify susceptibility genes for PTC. Methods: A genome-wide linkage analysis was performed in 38 families. Targeted association study and screening were performed in 2 large cohorts of PTC patients and controls. Candidate DNA variants were tested in functional studies. Results: Linkage analysis and association studies identified the Slit-Robo Rho GTPase activating protein 1 gene (SRGAP1) in the linkage peak as a candidate gene. Two missense variants, Q149H and A275T, localized in the Fes/CIP4 homology domain segregated with the disease in 1 family each. One missense variant, R617C, located in the RhoGAP domain occurred in 1 family. Biochemical assays demonstrated that the ability to inactivate CDC42, a key function of SRGAP1, was severely impaired by the Q149H and R617C variants. Conclusions: Our findings suggest that SRGAP1 is a candidate gene in PTC susceptibility. SRGAP1 is likely a low-penetrant gene, possibly of a modifier type. Copyright © 2013 by The Endocrine Society. Source

Harb J.G.,Human Cancer Genetics Program | Harb J.G.,Blood Research Institute | Neviani P.,Human Cancer Genetics Program | Neviani P.,Ohio State University | And 15 more authors.
Leukemia | Year: 2013

The dismal outcome of blast crisis chronic myelogenous leukemia (CML-BC) patients underscores the need for a better understanding of the mechanisms responsible for the development of drug resistance. Altered expression of the anti-apoptoticBcl-xL has been correlated with BCR-ABL leukemogenesis; however, its involvement in the pathogenesis and evolution of CML has not been formally demonstrated yet. Thus, we generated an inducible mouse model in which simultaneous expression of p210-BCR-ABL1 and deletion of bcl-x occurs within hematopoietic stem and progenitor cells. Absence of Bcl-xL did not affect development of the chronic phase-like myeloproliferative disease, but none of the deficient mice progressed to an advanced phenotype, suggesting the importance of Bcl-xL in survival of progressing early progenitor cells. Indeed, pharmacological antagonism of Bcl-xL, with ABT-263, combined with PP242-induced activation of BAD markedly augmented apoptosis of CML-BC cell lines and primary CD34 + progenitors but not those from healthy donors, regardless of drug resistance induced by bone marrow stromal cell-generated signals. Moreover, studies in which BAD or Bcl-xL expression was molecularly altered strongly support their involvement in ABT-263/PP242-induced apoptosis of CML-BC progenitors. Thus, suppression of the antiapoptotic potential of Bcl-xL together with BAD activation represents an effective pharmacological approach for patients undergoing blastic transformation. © 2013 Macmillan Publishers Limited All rights reserved. Source

Discover hidden collaborations