Huizhou Municipal Central Hospital of Guangdong Province

Huizhou, China

Huizhou Municipal Central Hospital of Guangdong Province

Huizhou, China

Time filter

Source Type

Xiong H.-L.,Huizhou Municipal Central Hospital of Guangdong Province | Zhou S.-W.,Huizhou Municipal Central Hospital of Guangdong Province | Sun A.-H.,Huizhou Municipal Central Hospital of Guangdong Province | He Y.,Huizhou Municipal Central Hospital of Guangdong Province | And 2 more authors.
Molecular Medicine Reports | Year: 2015

MicroRNAs (miRNAs) are a group of small non-coding RNA molecules, which serve an important function in the development of multidrug resistance in cancer through the post-transcriptional regulation of gene expression and RNA silencing. In the present study, the functional effects of miR-197 were analyzed in chemo-resistant gastric cancer cells. Low expression levels of miR-197 were observed in the fluorouracil (5-FU)-resistant gastric cell line SGC7901/5-FU when compared with those in the parental gastric cell line SGC7901. Overexpression of miR-197 in SGC7901/5-FU cells was identified to partially restore 5-FU sensitivity. miRNA target prediction algorithms suggested that mitogen-activated protein kinase 1 (MAPK1) is a candidate target gene for miR-197. A luciferase reporter assay confirmed that miR-197 led to silencing of the MAPK1 gene by recognizing and then specifically binding to the predicted site of the MAPK1 mRNA 3'untranslated region. When miR-197 was overexpressed in SGC7901 cells, the protein levels of MAPK1 were downregulated. Furthermore, MAPK1 knockdown significantly increased the growth inhibition rate of the SGC7901/5-FU cells compared with those in the control group. These results indicated that miR-197 may influence the sensitivity of 5-FU treatment in a gastric cancer cell line by targeting MAPK1.


PubMed | Huizhou Municipal Central Hospital of Guangdong Province and University of Missouri
Type: | Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie | Year: 2016

Hepatocellular carcinoma (HCC) is a highly aggressive solid malignancy throughout the world. Dysregulation of miRNAs play essential roles in HCC progression via aberrant regulation of cell proliferation, apoptosis, as well as metastasis. miR-663a is a poorly investigated miRNA. Whether miR-663a regulates HCC development remains unknown. The aim of the study was to explore the role of miR-663a in HCC development. To determine the expression level of miR-663a in HCC, we analyzed the data from GSE21362 and TCGA. The results showed that miR-663a was significantly down-regulated in HCC tissue compared with adjacent non-tumor tissue. Gain of function and loss of function assays revealed that miR-663a distinctly inhibited cell proliferation, migration and invasion. Mechanistic investigations demonstrated that miR-663a modulated cell functions through targeting and suppressing high mobility group A2 (HMGA2). In addition, overexpression of HMGA2 remarkably attenuated the tumor repressive effect of miR-663a. Taken together, miR-663a inhibits HCC cell proliferation and motility by targeting HMGA2.

Loading Huizhou Municipal Central Hospital of Guangdong Province collaborators
Loading Huizhou Municipal Central Hospital of Guangdong Province collaborators