HUGTIP

Badalona, Spain
Badalona, Spain

Time filter

Source Type

Pino M.,Autonomous University of Barcelona | Erkizia I.,Autonomous University of Barcelona | Benet S.,Autonomous University of Barcelona | Erikson E.,University of Heidelberg | And 11 more authors.
Retrovirology | Year: 2015

BACKGROUND: Myeloid cells are key players in the recognition and response of the host against invading viruses. Paradoxically, upon HIV-1 infection, myeloid cells might also promote viral pathogenesis through trans-infection, a mechanism that promotes HIV-1 transmission to target cells via viral capture and storage. The receptor Siglec-1 (CD169) potently enhances HIV-1 trans-infection and is regulated by immune activating signals present throughout the course of HIV-1 infection, such as interferon α (IFNα).RESULTS: Here we show that IFNα-activated dendritic cells, monocytes and macrophages have an enhanced ability to capture and trans-infect HIV-1 via Siglec-1 recognition of viral membrane gangliosides. Monocytes from untreated HIV-1-infected individuals trans-infect HIV-1 via Siglec-1, but this capacity diminishes after effective antiretroviral treatment. Furthermore, Siglec-1 is expressed on myeloid cells residing in lymphoid tissues, where it can mediate viral trans-infection.CONCLUSIONS: Siglec-1 on myeloid cells could fuel novel CD4(+) T-cell infections and contribute to HIV-1 dissemination in vivo.


Pino M.,Autonomous University of Barcelona | Erkizia I.,Autonomous University of Barcelona | Benet S.,Autonomous University of Barcelona | Erikson E.,Goethe University Frankfurt | And 16 more authors.
Retrovirology | Year: 2015

Background: Myeloid cells are key players in the recognition and response of the host against invading viruses. Paradoxically, upon HIV-1 infection, myeloid cells might also promote viral pathogenesis through trans-infection, a mechanism that promotes HIV-1 transmission to target cells via viral capture and storage. The receptor Siglec-1 (CD169) potently enhances HIV-1 trans-infection and is regulated by immune activating signals present throughout the course of HIV-1 infection, such as interferon aα (IFNaα). Results: Here we show that IFNaα-activated dendritic cells, monocytes and macrophages have an enhanced ability to capture and trans-infect HIV-1 via Siglec-1 recognition of viral membrane gangliosides. Monocytes from untreated HIV-1-infected individuals trans-infect HIV-1 via Siglec-1, but this capacity diminishes after effective antiretroviral treatment. Furthermore, Siglec-1 is expressed on myeloid cells residing in lymphoid tissues, where it can mediate viral trans-infection. Conclusions: Siglec-1 on myeloid cells could fuel novel CD4+ T-cell infections and contribute to HIV-1 dissemination in vivo. © 2015 Pino et al.; licensee BioMed Central.


Castellanos E.,Institute of Predictive and Personalized Medicine of Cancer IMPPC | Bielsa I.,Germans Trias I Pujol Hospital HUGTiP | Carrato C.,HUGTiP | Rosas I.,Institute of Predictive and Personalized Medicine of Cancer IMPPC | And 8 more authors.
BMC Medical Genomics | Year: 2015

Background: A clinical overlap exists between mosaic Neurofibromatosis Type 2 and sporadic Schwannomatosis conditions. In these cases a molecular analysis of tumors is recommended for a proper genetic diagnostics. This analysis is challenged by the fact that schwannomas in both conditions bear a somatic double inactivation of the NF2 gene. However, SMARCB1-associated schwannomas follow a four-hit, three-step model, in which both alleles of SMARCB1 and NF2 genes are inactivated in the tumor, with one of the steps being always the loss of a big part of chromosome 22 involving both loci. Case presentation: Here we report a 36-year-old woman who only presented multiple subcutaneous schwannomas on her right leg. To help discriminate between both possible diagnoses, an exhaustive molecular genetic and genomic analysis was performed on two schwannomas of the patient, consisting in cDNA and DNA sequencing, MLPA, microsatellite multiplex PCR and SNP-array analyses. The loss of a big part of chromosome 22 (22q12.1q13.33) was identified in both tumors. However, this loss involved the NF2 but not the SMARCB1 locus. SNP-array analysis revealed the presence of the same deletion breakpoint in both schwannomas, indicating that this alteration was actually the first NF2 inactivating hit. In addition, a distinct NF2 point mutation in each tumor was identified, representing independent second hits. In accordance with these results, no deletions or point mutations in the SMARCB1 gene were identified. None of the mutations were present in the blood. Two of the patient ' s children inherited chromosome 22 deleted in schwannomas of the mother, but in its wild type form. Conclusions: These results conclusively confirm the segmental mosaic NF2 nature of the clinical phenotype presented. © 2015 Castellanos et al.; licensee BioMed Central.


PubMed | Institute of Predictive and Personalized Medicine of Cancer IMPPC, HUGTiP, Germans Trias i Pujol Hospital HUGTiP, Program on Clinical Genetics and Genetic Counseling and 2 more.
Type: | Journal: BMC medical genomics | Year: 2015

A clinical overlap exists between mosaic Neurofibromatosis Type 2 and sporadic Schwannomatosis conditions. In these cases a molecular analysis of tumors is recommended for a proper genetic diagnostics. This analysis is challenged by the fact that schwannomas in both conditions bear a somatic double inactivation of the NF2 gene. However, SMARCB1-associated schwannomas follow a four-hit, three-step model, in which both alleles of SMARCB1 and NF2 genes are inactivated in the tumor, with one of the steps being always the loss of a big part of chromosome 22 involving both loci.Here we report a 36-year-old woman who only presented multiple subcutaneous schwannomas on her right leg. To help discriminate between both possible diagnoses, an exhaustive molecular genetic and genomic analysis was performed on two schwannomas of the patient, consisting in cDNA and DNA sequencing, MLPA, microsatellite multiplex PCR and SNP-array analyses. The loss of a big part of chromosome 22 (22q12.1q13.33) was identified in both tumors. However, this loss involved the NF2 but not the SMARCB1 locus. SNP-array analysis revealed the presence of the same deletion breakpoint in both schwannomas, indicating that this alteration was actually the first NF2 inactivating hit. In addition, a distinct NF2 point mutation in each tumor was identified, representing independent second hits. In accordance with these results, no deletions or point mutations in the SMARCB1 gene were identified. None of the mutations were present in the blood. Two of the patients children inherited chromosome 22 deleted in schwannomas of the mother, but in its wild type form.These results conclusively confirm the segmental mosaic NF2 nature of the clinical phenotype presented.

Loading HUGTIP collaborators
Loading HUGTIP collaborators