Entity

Time filter

Source Type

Berkshire, United Kingdom

Hobbs D.A.,Hugh Sinclair Unit of Human Nutrition | Hobbs D.A.,University of Reading | George T.W.,Northumbria University | Lovegrove J.A.,Hugh Sinclair Unit of Human Nutrition | Lovegrove J.A.,University of Reading
Nutrition Research Reviews | Year: 2013

Evidence has accumulated in recent years that suggests that nitrate from the diet, particularly vegetables, is capable of producing bioactive NO in the vasculature, following bioconversion to nitrite by oral bacteria. The aim of the present review was to consider the current body of evidence for potential beneficial effects of dietary nitrate on blood pressure and endothelial function, with emphasis on evidence from acute and chronic human intervention studies. The studies to date suggest that dietary nitrate acutely lowers blood pressure in healthy humans. An inverse relationship was seen between dose of nitrate consumed and corresponding systolic blood pressure reduction, with doses of nitrateas low as 3 mmol of nitrate reducing systolic blood pressure by 3 mmHg. Moreover, the current studies provide some promising evidence on the beneficial effects of dietary nitrate on endothelial function. In vitro studies suggest a number of potential mechanisms by which dietary nitrate and its sequential reduction to NO may reduce blood pressure and improve endothelial function, such as: acting as a substrate for endothelial NO synthase; increasing vasodilation; inhibiting mitochondrial reactive oxygen species production and platelet aggregation. In conclusion, the evidence for beneficial effects of dietary nitrate on blood pressure and endothelial function is promising. Further long-term randomised controlled human intervention studies assessing the potential effects of dietary nitrate on blood pressure and endothelial function are needed, particularly in individuals with hypertension and at risk of CVD. © The Author 2013. Source


Calabuig-Navarro M.V.,Hugh Sinclair Unit of Human Nutrition | Calabuig-Navarro M.V.,University of Reading | Jackson K.G.,Hugh Sinclair Unit of Human Nutrition | Jackson K.G.,University of Reading | And 5 more authors.
Journal of Nutrition | Year: 2014

Background: Apolioprotein E (APOE) genotype is reported to influence a person's fasting lipid profile and potentially the response to dietary fat manipulation. The impact of APOE genotype on the responsiveness to meals of varying fat composition is unknown. Objective: We examined the effect of meals containing 50 g of fat rich in saturated fatty acids (SFAs), unsaturated fatty acids (UNSATs), or SFAs with fish oil (SFA-FO) on postprandial lipemia. Method: A randomized, controlled, test meal study was performed in men recruited according to the APOE genotype (n = 10 APOE3/3, n = 11 APOE3/E4). Results: For the serum apoE response (meal × genotype interaction P = 0.038), concentrations were on average 8% lower after the UNSAT than the SFA-FO meal in APOE4 carriers (P = 0.015) only. In the genotype groups combined, there was a delay in the time to reach maximum triacylglycerol (TG) concentration (mean6 SEM: 313 ± 25 vs. 266 ± 27 min) and higher maximum nonesterified fatty acid (0.73 ± 0.05 vs. 0.60 ± 0.03 mmol/L) and glucose (7.92 ± 0.22 vs. 7.25 ± 0.22 mmol/L) concentrations after the SFA than the UNSAT meal, respectively (P # 0.05). In the Svedberg flotation rate 60-400 TG-rich lipoprotein fraction, meal × genotype interactions were observed for incremental area under the curve (IAUC) for the TG (P = 0.038) and apoE (P = 0.016) responses with a 58%lower apoE IAUC after the UNSAT than the SFA meal (P = 0.017) in the E4 carriers. Conclusions: Our data indicate that APOE genotype had a modest impact on the postprandial response to meals of varying fat composition in normolipidemic men. The physiologic importance of greater apoE concentrations after the SFA-rich meals in APOE4 carriers may reflect an impact on TG-rich lipoprotein clearance from the circulation. © 2014 American Society for Nutrition. Source


Hobbs D.A.,Hugh Sinclair Unit of Human Nutrition | Hobbs D.A.,University of Reading | Goulding M.G.,Hugh Sinclair Unit of Human Nutrition | Goulding M.G.,University of Reading | And 11 more authors.
Journal of Nutrition | Year: 2013

Dietary nitrate, from beetroot, has been reported to lower blood pressure (BP) by the sequential reduction of nitrate to nitrite and further to NO in the circulation. However, the impact of beetroot on microvascular vasodilation and arterial stiffness is unknown. In addition, beetroot is consumed by only 4.5% of the UK population, whereas bread is a staple component of the diet. Thus, we investigated the acute effects of beetroot bread (BB) on microvascular vasodilation, arterial stiffness, and BP in healthy participants. Twenty-three healthy men received 200 g bread containing 100 g beetroot (1.1 mmol nitrate) or 200 g control white bread (CB; 0 g beetroot, 0.01 mmol nitrate) in an acute, randomized, open-label, controlled crossover trial. The primary outcome was postprandial microvascular vasodilation measured by laser Doppler iontophoresis and the secondary outcomes were arterial stiffness measured by Pulse Wave Analysis and Velocity and ambulatory BP measured at regular intervals for a total period of 6 h. Plasma nitrate and nitrite were measured at regular intervals for a total period of 7 h. The incremental area under the curve (0-6 h after ingestion of bread) for endotheliumindependent vasodilation was greater (P = 0.017) and lower for diastolic BP (DBP; P = 0.032) but not systolic (P = 0.99) BP after BB comparedwith CB. These effects occurred in conjunctionwith increases in plasma and urinary nitrate (P < 0.0001) and nitrite (P < 0.001). BB acutely increased endothelium-independent vasodilation and decreased DBP. Therefore, enriching bread with beetroot may be a suitable vehicle to increase intakes of cardioprotective beetroot in the diet and may provide new therapeutic perspectives in the management of hypertension. © 2013 American Society for Nutrition. Source

Discover hidden collaborations