HUGA Optotech Inc.

Taichung, Taiwan

HUGA Optotech Inc.

Taichung, Taiwan

Time filter

Source Type

Patent
HUGA Optotech Inc. | Date: 2016-08-25

A semiconductor cell includes a substrate; a buffer structure disposed on the substrate; a channel layer having a band gap, and including a first portion on the buffer structure and a first protrusion which is disposed on the first portion and has a first top surface and a first inclined surface connecting to the first top surface; a barrier having a band gap greater than the band gap of the channel layer, disposed on the channel layer, and including a second portion disposed on the first portion, and a second protrusion covering the first top surface of the first protrusion and having a second top surface and a second inclined surface connecting to the second top surface and parallel to the first inclined surface; a first electrode disposed on the second protrusion; and a second electrode disposed on the second portion of the barrier and separated from the first electrode.


Patent
HUGA Optotech Inc. and Interlight Optotech Corporation | Date: 2016-10-19

This disclosure discloses an LED assembly. The LED assembly includes a transparent mount with a top surface and a bottom surface opposite to the top surface, an LED chip arranged on the top surface, an electrode plate, a first phosphor layer having a first phosphor, and a second phosphor layer having a second phosphor, wherein the transparent mount and the electrode plate substantially have a same width. The electrode plate is arranged on an edge of the top surface and electrically connected to the LED chip.


Patent
HUGA Optotech Inc. and Epistar Corporation | Date: 2015-11-27

Disclosure includes a normally-off field-effect semiconductor device and the fabrication method thereof. An antigrowth portion is formed on a template. A first semiconductor layer and a second semiconductor layer on the template form two heterojunctions for creating two-dimensional electron gas regions, while a heterojunction-free area defined by the antigrowth portion separate the heterojunctions. A dielectric layer is on the second semiconductor layer and above the antigrowth portion. Two channel electrodes formed on the second semiconductor layer are electrically coupled to the two-dimensional electron gas regions respectively. A gate electrode on the dielectric layer and above the antigrowth portion is used for control of conduction between the channel electrodes.


Patent
Epistar Corporation and HUGA Optotech Inc. | Date: 2016-03-09

A field effect transistor includes a substrate; a first semiconductor layer, disposed over the substrate; a second semiconductor layer, disposed over the first semiconductor layer, wherein an interface between the first semiconductor layer and the second semiconductor layer has a two-dimensional electron gas; a p+ III-V semiconductor layer, disposed over the second semiconductor layer; and a depolarization layer, disposed between the second semiconductor layer and the p+ III-V semiconductor layer, wherein the depolarization layer includes a metal oxide layer.


Patent
Epistar Corporation and HUGA Optotech Inc. | Date: 2016-04-19

A high electron mobility transistor comprises a substrate, an epitaxial stack arranged above the substrate and having a first region and a second region surrounding the first region, a matrix electrode structure arranged in the first region. The matrix electrode comprises a plurality of first electrodes arranged on the epitaxial stack, a plurality of second electrodes arranged on the epitaxial stack and adjacent to the plurality of first electrodes, a plurality of third electrodes arranged adjacent to the plurality of first electrodes and second electrodes. One of the plurality of first electrodes comprises a first side, a second side, a third side and a fourth side. The first side and the third side are opposite sides, and the second side and the fourth side are opposite sides. Two of the plurality of second electrodes are arranged on the first side and the third side, and two of the plurality of third electrodes are arranged on the second side and the fourth side.


Patent
Epistar Corporation and HUGA Optotech Inc. | Date: 2015-05-19

This disclosure discloses a power device. The power device comprises a substrate; a first semiconductor layer having a first band gap and disposed on the substrate; a second semiconductor layer having a second band gap being lager than the first band gap and disposed on the first semiconductor layer; a third semiconductor layer having a third band gap smaller than the second band gap layer and disposed on the second semiconductor layer; a source electrode disposed on the third semiconductor layer; a base electrode electrically connecting the source electrode; and a p-type metal-oxide layer disposed between the base electrode and the third semiconductor layer.


Patent
HUGA Optotech Inc. and Interlight Optotech Corporation | Date: 2015-04-01

An LED assembly, comprising: a light-transmissive substrate comprising a surface, a central region and a peripheral region surrounding the central region; a heat dissipation element, wherein a portion of the heat dissipation element is corresponding to the central region of the light-transmissive substrate; a first wavelength conversion layer arranged on the surface of the light-transmissive substrate and corresponding to the peripheral region of the light-transmissive substrate; a plurality of LED elements arranged on the first wavelength conversion layer; a second wavelength conversion layer arranged on the surface of the light-transmissive substrate and covering the plurality of LED elements and the first wavelength conversion layer; a plurality of conductive structures surrounding the plurality of LED elements and electrically connected thereto, wherein the plurality of conductive structures is formed on the surface and separated from each other; and a plurality of electrical contacts electrically connected to the plurality of conductive structures respectively.


Patent
HUGA Optotech Inc. and Interlight Optotech Corporation | Date: 2014-10-03

Disclosed embodiments include a manufacturing method for an LED assembly. Providing a first carrier, wherein several LED chips are formed on the first carrier, and providing a second carrier. Attaching the second carrier to the LED chips and detaching the first carrier from the LED chips but leaving the LED chips on the second carrier.


Patent
HUGA Optotech Inc. and Interlight Optotech Corporation | Date: 2014-06-19

Disclosed is an LED assembly having an omnidirectional light field. The LED assembly has a transparent substrate with first and second surfaces facing to opposite orientations respectively. LED chips are mounted on the first surface and are electrically interconnected by a circuit. A transparent capsule with a phosphor dispersed therein is formed on the first surface and substantially encloses the circuit and the LED chips. First and second electrode plates are formed on the first or second surface, and electrically connected to the LED chips.


Patent
HUGA Optotech Inc. and Interlight Optotech Corporation | Date: 2014-06-19

Disclosed is an LED assembly having an omnidirectional light field. The LED assembly has a transparent substrate, LED chips, and first and second electrode plates. The transparent substrate comprises first and second surfaces facing to opposite orientations respectively. The transparent substrate has a via hole tunneling therethrough, which is formed with conductive material to provide a conductive via. The LED chips are mounted on the first surface. The first and second electrode plates are formed on the first and second surfaces respectively. The light emitting diode chips and the conductive via are electrically connected in series between the first and second electrode plates.

Loading HUGA Optotech Inc. collaborators
Loading HUGA Optotech Inc. collaborators