Time filter

Source Type

McKenzie M.,Hudson Institute of Medical Research | McKenzie M.,Monash University | Duchen M.R.,University College London
PLoS ONE | Year: 2016

Mutations in mitochondrial DNA (mtDNA) can cause mitochondrial disease, a group of metabolic disorders that affect both children and adults. Interestingly, individual mtDNA mutations can cause very different clinical symptoms, however the factors that determine these phenotypes remain obscure. Defects in mitochondrial oxidative phosphorylation can disrupt cell signaling pathways, which may shape these disease phenotypes. In particular, mitochondria participate closely in cellular calcium signaling, with profound impact on cell function. Here, we examined the effects of a homoplasmic m.13565C>T mutation in MT-ND5 on cellular calcium handling using transmitochondrial cybrids (ND5 mutant cybrids). We found that the oxidation of NADH and mitochondrial membrane potential (▵ψm ) were significantly reduced in ND5 mutant cybrids. These metabolic defects were associated with a significant decrease in calcium uptake by ND5 mutant mitochondria in response to a calcium transient. Inhibition of glycolysis with 2-deoxy-D-glucose did not affect cytosolic calcium levels in control cybrids, but caused an increase in cytosolic calcium in ND5 mutant cybrids. This suggests that glycolytically-generated ATP is required not only to maintain ▵ψm in ND5 mutant mitochondria but is also critical for regulating cellular calcium homeostasis. We conclude that the m.13565C>T mutation in MT-ND5 causes defects in both mitochondrial oxidative metabolism and mitochondrial calcium sequestration. This disruption of mitochondrial calcium handling, which leads to defects in cellular calcium homeostasis, may be an important contributor to mitochondrial disease pathogenesis. © 2016 McKenzie, Duchen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Parker B.S.,La Trobe University | Rautela J.,La Trobe University | Rautela J.,University of Melbourne | Rautela J.,Peter MacCallum Cancer Center | And 2 more authors.
Nature Reviews Cancer | Year: 2016

The interferons (IFNs) are a family of cytokines that protect against disease by direct effects on target cells and by activating immune responses. The production and actions of IFNs are finely tuned to achieve maximal protection and avoid the potential toxicity associated with excessive responses. IFNs are back in the spotlight owing to mounting evidence that is reshaping how we can exploit this pathway therapeutically. As IFNs can be produced by, and act on, both tumour cells and immune cells, understanding this reciprocal interaction will enable the development of improved single-agent or combination therapies that exploit IFN pathways and new 'omics'-based biomarkers to indicate responsive patients. © 2016 Macmillan Publishers Limited. Source

Low M.,Walter and Eliza Hall Institute of Medical Research | Low M.,University of Melbourne | Infantino S.,Walter and Eliza Hall Institute of Medical Research | Infantino S.,University of Melbourne | And 4 more authors.
Immunological Reviews | Year: 2016

Antibody-secreting cells (ASCs) are critical for a functional and effective adaptive immune system. In a number of illnesses, however, these same cells contribute to the underlying disease state leading to significant morbidity and mortality. While therapeutic targeting of antibody-secreting cells has progressed significantly over the last two decades, many of these conditions remain major health problems. In this review, we will discuss current and potential therapeutic targeting of ASCs in the context of the known biology of these cells. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Source

Simpson E.,Hudson Institute of Medical Research | Santen R.J.,University of Virginia
Journal of Molecular Endocrinology | Year: 2015

Oestrogens exert important effects on the reproductive as well as many other organ systems in both men and women. The history of the discovery of oestrogens, the mechanisms of their synthesis, and their therapeutic applications are very important components of the fabric of endocrinology. These aspects provide the rationale for highlighting several key components of this story. Two investigators, Edward Doisy and Alfred Butenandt, purified and crystalized oestrone nearly simultaneously in 1929, and Doisy later discovered oestriol and oestradiol. Butenandt won the Nobel Prize for this work and Doisy’s had to await his purification of vitamin K. Early investigators quickly recognized that oestrogens must be synthesized from androgens and later investigators called this process aromatization. The aromatase enzyme was then characterized, its mechanism determined, and its structure identified after successful crystallization. With the development of knock-out methodology, the precise effects of oestrogen in males and females were defined and clinical syndromes of deficiency and excess described. Their discovery ultimately led to the development of oral contraceptives, treatment of menopausal symptoms, therapies for breast cancer, and induction of fertility, among others. The history of the use of oestrogens for postmenopausal women to relieve symptoms has been characterized by cyclic periods of enthusiasm and concern. The individuals involved in these studies, the innovative thinking required, and the detailed understanding made possible by evolving biologic and molecular techniques provide many lessons for current endocrinologists. © 2015 Society for Endocrinology. Source

Palmer K.R.,University of Melbourne | Kaitu'u-Lino T.J.,University of Melbourne | Hastie R.,University of Melbourne | Hannan N.J.,University of Melbourne | And 7 more authors.
Hypertension | Year: 2015

In preeclampsia, the antiangiogenic factor soluble fms-like tyrosine kinase-1 (sFLT-1) is released from placenta into the maternal circulation, causing endothelial dysfunction and organ injury. A recently described splice variant, sFLT-1 e15a, is primate specific and the most abundant placentally derived sFLT-1. Therefore, it may be the major sFLT-1 isoform contributing to the pathophysiology of preeclampsia. sFLT-1 e15a protein remains poorly characterized: its bioactivity has not been comprehensively examined, and serum levels in normal and preeclamptic pregnancy have not been reported. We generated and validated an sFLT-1 e15a-specific ELISA to further characterize serum levels during pregnancy, and in the presence of preeclampsia. Furthermore, we performed assays to examine the bioactivity and antiangiogenic properties of sFLT-1 e15a protein. sFLT-1 e15a was expressed in the syncytiotrophoblast, and serum levels rose across pregnancy. Strikingly, serum levels were increased 10-fold in preterm preeclampsia compared with normotensive controls. We confirmed sFLT-1 e15a is bioactive and is able to inhibit vascular endothelial growth factor signaling of vascular endothelial growth factor receptor 2 and block downstream Akt phosphorylation. Furthermore, sFLT-1 e15a has antiangiogenic properties. sFLT-1 e15a decreased endothelial cell migration, invasion, and inhibited endothelial cell tube formation. Administering sFLT-1 e15a blocked vascular endothelial growth factor induced sprouts from mouse aortic rings ex vivo. We have demonstrated that sFLT-1 e15a is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity. Future development of diagnostics and therapeutics for preeclampsia should consider targeting placentally derived sFLT-1 e15a. © 2015 American Heart Association, Inc. Source

Discover hidden collaborations