Entity

Time filter

Source Type

Utrecht, Netherlands

Fennema E.,University of Twente | Rivron N.,University of Twente | Rivron N.,Hubrecht Institute | Rouwkema J.,University of Twente | And 2 more authors.
Trends in Biotechnology | Year: 2013

3D cell culture methods confer a high degree of clinical and biological relevance to in vitro models. This is specifically the case with the spheroid culture, where a small aggregate of cells grows free of foreign materials. In spheroid cultures, cells secrete the extracellular matrix (ECM) in which they reside, and they can interact with cells from their original microenvironment. The value of spheroid cultures is increasing quickly due to novel microfabricated platforms amenable to high-throughput screening (HTS) and advances in cell culture. Here, we review new possibilities that combine the strengths of spheroid culture with new microenvironment fabrication methods that allow for the creation of large numbers of highly reproducible, complex tissues. © 2013. Source


Jeltsch M.,University of Helsinki | Jha S.K.,University of Helsinki | Tvorogov D.,University of Helsinki | Anisimov A.,University of Helsinki | And 6 more authors.
Circulation | Year: 2014

Background: Hennekam lymphangiectasia-lymphedema syndrome (Online Mendelian Inheritance in Man 235510) is a rare autosomal recessive disease, which is associated with mutations in the CCBE1 gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for collagen- and calcium-binding epidermal growth factor domains 1 (CCBE1) interactions with the vascular endothelial growth factor-C (VEGF-C) growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. Methods and Results: By analyzing VEGF-C produced by CCBE1-transfected cells, we found that, whereas CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector-mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by adeno-associated viral vector-VEGF-C. Conclusions: These results identify A disintegrin and metalloprotease with thrombospondin motifs-3 as a VEGF-C-activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest that CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis. © 2014 American Heart Association, Inc. Source


Patent
Hubrecht Institute and Konicklijke Nederlandse Akademie Van Wetenschappen | Date: 2010-05-10

The invention relates to the fields of biochemistry, pharmacy and oncology. The invention particularly relates to the use of novel stem cell markers for the isolation of stem cells. The invention further relates to the obtained stem cells and their use in for example research or treatment, for example, for the preparation of a medicament for the treatment of damaged or diseased tissue. In one of the embodiments, the invention provides a method for obtaining (or isolating) stem cells comprising optionally preparing a cell suspension from a tissue or organ sample, contacting said cell suspension with an Lgr 6 or 5 binding compound, identify the cells bound to said binding compound, and optionally isolating the stem cells from said binding compound. The invention further relates to means suitable for cancer treatment and even more specific for the treatment of cancer by eradicating cancer stem cells.


Sato T.,Keio University | Sato T.,Hubrecht Institute | Clevers H.,Hubrecht Institute
Methods in Molecular Biology | Year: 2013

The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently shown that Lgr5 (Leucine-rich repeat-containing G protein-coupled receptor) is expressed in intestinal stem cells by an in vivo genetic lineage tracing strategy. In the past, extensive efforts have been made to establish primary small intestinal culture systems. However, no defined, reproducible and robust culture system had been developed. To establish such a system, we screened for optimal growth factor combinations based on genetic evidence of self-renewal regulation, differentiation, and carcinogenesis of intestinal stem cells. Here, we describe methods that we have established for the isolation and culture of primary small intestinal epithelial stem cells. In this culture system, isolated crypts form organoid structures with a histological hierarchy recapitulating in vivo small intestinal epithelium. Single isolated Lgr5+ intestinal stem cells also form these organoid structures, in which stem cells are maintained by self-renewal and give rise to all lineages of the intestinal epithelium. This culture system is particularly useful for studying the regulation of intestinal stem cell self-renewal and differentiation. © 2013 Springer Science+Business Media, LLC. Source


Welling M.,Hubrecht Institute | Geijsen N.,Hubrecht Institute | Geijsen N.,University Utrecht
Trends in Cell Biology | Year: 2013

Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass (ICM) of blastocyst embryos. Although first characterized over 30 years ago, the ontology of these cells remains elusive. Identifying the in vivo counterpart of murine ESCs will be essential for the derivation of stable ESC lines from other species. Several hypotheses exist concerning the ontology of murine ESCs. Recent data demonstrate that ESCs emerge from a subpopulation of ICM cells that transit through a Blimp1-positive state, suggesting that perhaps a germ cell developmental program underlies ESC derivation and maintenance. Alternatively, the common dependence of ESCs and diapause embryos on the cytokine LIF (leukemia inhibitory factor) has been thought to signify that murine ESCs employ a diapause-like program for their maintenance of pluripotency. Here we review different hypotheses regarding the nature of murine ESCs and discuss their implications for human pluripotent stem cell biology. © 2013 Elsevier Ltd. Source

Discover hidden collaborations