Time filter

Source Type

Liu J.,Wuhan University | Xu Y.,Hubei Research Institute of Products Quality Supervision and Inspection | Yang Q.,Wuhan University | Li C.,Wuhan University | And 4 more authors.
Acta Biomaterialia | Year: 2013

Novel reducible and degradable brushed poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) derivatives were synthesized and evaluated as non-viral gene delivery vectors. First, alkyne-functionalized poly(aspartic acid) with a disulfide linker between the propargyl group and backbone poly([(propargyl carbamate)-cystamine]-a,b-aspartamide) (P(Asp-SS-AL)) was synthesized. Second, linear low molecular weight (LMW) monoazido-functionalized PDMAEMAs synthesized via atom transfer radical polymerization were conjugated to the polypeptide side-chains of P(Asp-SS-AL) via click chemistry to yield high molecular weight (HMW) polyaspartamide-based disulfide-containing brushed PDMAEMAs (PAPDEs). The PAPDEs were able to condense plasmid DNA to form 100 to 200 nm polyplexes with positive f-potentials. Moreover, in the presence of dithiothreitol the PAPDEs degraded into LMW PDAMEMA, resulting in disintegration of the PAPDE/DNA polyplexes and subsequent release of plasmid DNA. In vitro experiments revealed that the PAPDEs were less cytotoxic and more effective in gene transfection than control 25 kDa poly(ethyleneimine) and HMW linear PDMAEMA. In conclusion, reducible and degradable polycations composed of LMW PDMAEMAs coupled to a polypeptide backbone via reduction-sensitive disulfide bonds are effective gene vectors with an excellent cytocompatibility. © 2013 Acta Materialia Inc. Published by Elsevier Ltd.

Wang S.M.,Wuhan University of Technology | Li Z.,Wuhan University of Technology | Wang X.Y.,Wuhan University of Technology | Li X.C.,Hubei Research Institute of Products Quality Supervision and Inspection
Advanced Materials Research | Year: 2014

This paper describes a new genre of Toroidal-CVT system, called the Sphere-Toroidal Continuously Variable Transmission (STCVT), which is derived from the half-toroidal traction drive (TCVT) and introduces its structure and working principle. The torque transfers from the input shaft to the cross-axle universal shaft coupling connected with the driven shaft. By discussing the difference between the torque-transfer, the paper will show the possibility of the application in the vehicle. To conclude, the system has the potential to implement infinite extension for the CVT theoretically. © (2014) Trans Tech Publications, Switzerland.

Wang X.,Huazhong University of Science and Technology | Wang X.,Huazhong Agricultural University | Dong L.-L.,Huazhong Agricultural University | Zhang C.-X.,CAS Institute of Chemistry | And 5 more authors.
Biochemical and Biophysical Research Communications | Year: 2011

In Synechocystis sp. PCC 6803, the loop domain (aa 1-70) of the phycobilisome core-membrane linker, LCM, was found to interact with the glycosyl transferase homolog, Sll1466. Growth of a Sll1466 knock-out mutant was slightly faster in low light, but strongly inhibited in high light; the phenotype is discussed in relation to the regulation of light energy transfer to photosystem II. At the molecular level, the mutant shows the following changes compared to the wild type: (1) a smaller size and higher mobility of phycobilisomes on the thylakoid membrane, and (2) a changed lipid composition of the thylakoid membrane, especially decreased amounts of digalactosyl diacylglycerol. These results indicate a profound regulatory role for Sll1466 in regulating photosynthetic energy transfer. © 2011 Elsevier Inc.

Zhang M.,Hubei University | Liu J.,Huazhong University of Science and Technology | Kuang Y.,Hubei Engineering University | Li Q.,Huazhong University of Science and Technology | And 7 more authors.
Journal of Materials Chemistry B | Year: 2016

Suitable protection strategies utilized in anticancer drug delivery systems enable carriers to reach their targeted positions and release drugs intracellularly more effectively. In this study, a novel "stealthy" chitosan (CHI)/mesoporous silica nanoparticle (MSN) based complex system, named DOX@MSN-SS-CHI-PEG, was developed for tumor-triggered intracellular drug release. CHI was applied to block the pores of MSNs to prevent premature drug release, whereas mPEG was grafted on the surface of the nanoparticles via a pH-sensitive benzoic imine linker to protect the carriers. As the pH of solid tumor tissues is slightly lower than that of normal tissues, mPEG could leave the nanoparticles to expose positively charged CHI at the surface, which enabled the nanoparticles to enter cancer cells more easily. The MSNs were covered by CHI via redox-sensitive disulfide bonds. As a result, the carriers could release the drug intercellularly to kill cancer cells owing to the high concentration of glutathione (GSH) in the cytosol. In vitro drug release studies at different GSH concentrations proved the redox-sensitivity of DOX@MSN-SS-CHI-PEG. mPEG leaving studies demonstrated that mPEG could leave the nanoparticles effectively at pH 6.0. The cytotoxicity and cell internalization behavior were also investigated in detail. In conclusion, the novel DOX@MSN-SS-CHI-PEG drug delivery system, which was "stealthy" in the physiological environment at pH 7.4 because of the protection of mPEG, was "activated" in weakly acidic tumor tissues to achieve tumor-triggered intracellular drug release; this system has great potential for cancer therapy. © 2016 The Royal Society of Chemistry.

Chen H.,Hubei University | Zheng D.,Hubei University | Liu J.,Huazhong University of Science and Technology | Kuang Y.,Hubei Engineering University | And 7 more authors.
International Journal of Biological Macromolecules | Year: 2016

In this work, a novel pH-sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles (MSNs), DOX@MSN-DDA-CL, are prepared. The dextrin grafting on the surface of MSNs is oxidized by KIO4 to obtain dextrin dialdehyde, which is then cross-linked by tetraethylenepentamine through a pH-sensitive Schiff's base. Under physiological conditions, the cross-linked dextrin dialdehyde blocks the pores to prevent premature release of model drug doxorubicin hydrochloride (DOX). In the weak acidic environment, pH 6.0 in this work, the Schiff's base can be hydrolyzed and released the drug. The in vitro drug release studies at different pHs prove the pH-sensitivity of DOX@MSN-DDA-CL. The cytotoxicity and cell internalization behavior are also investigated in detail. In vivo tissue distribution and pharmacokinetics with a H22-bearing mouse animal mode are also studied, prove that DOX@MSN-DDA-CL has a longer retention time than that of pure DOX and can accumulate in tumor region via enhanced permeation and retention and nanomaterials-induced endothelial cell leakiness effects. In conclusion, the pH-sensitive modified dextrin/MSNs complex drug delivery system has a great potential for cancer therapy. © 2016 Elsevier B.V..

Discover hidden collaborations