Entity

Time filter

Source Type


Zhou Y.,Wuhan University | Zhou Y.,Changjiang River Scientific Research Institute | Guo S.,Wuhan University | Xu J.,Changjiang River Scientific Research Institute | And 2 more authors.
Journal of Hydro-Environment Research | Year: 2015

For floodwater utilization, seasonal flood-limited water level (FLWL) plays a more and more role in compromising between flood control and beneficial use in reservoir operation during flood season. The prerequisite of determining a seasonal FLWL is that flood control risks should not be increased in reservoir operation as compared with the original operating rule using a fixed FLWL. In this paper, a risk analysis model for deriving seasonal FLWL that considers uncertainties of hydrology, hydraulic condition and reservoir volume is proposed and developed. The risk analysis model consists of three modules: the first is a hydrological uncertainty analysis module, the second is a hydraulic uncertainty analysis module, as well as the third is a reservoir volume uncertainty analysis module. The acceptable risk constraints are given, and the upper limitation of seasonal FLWL is estimated by using Monte Carlo simulation. The China' Wanjiazhai reservoir (WR) is selected as a case study. The application results show that (1) the hydrological uncertainty and the reservoir volume uncertainty are major contribution factors to seasonal FLWL while the discharge capacity uncertainty is inapparent influence of seasonal FLWL, (2) the most reasonable upper limitations of seasonal FLWL in WR during main-flood and post-flood seasons are 972.3 and 974.1m, respectively, which considers hydrological uncertainty, minimum hydraulic capability and minimum reservoir volume. The relative magnitudes of seasonal FLWL and the flood water utilization rates during main-flood and post-flood seasons are 0.65% and 61.05%, as well as 0.84% and 81.60%, respectively. Seasonal FLWL can effectively enhance flood water utilization rate without lowering the annual flood control standard compared with annual FLWL. © 2015 International Association for Hydro-environment Engineering and Research, Asia Pacific Division.


Liu Y.Y.,Changjiang Water Resources Commission Changjiang Institute of Survey | Liu B.J.,Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute
Applied Mechanics and Materials | Year: 2014

Hydrologic responses to climate change have become a great challenge and attracted widespread attention of the researchers. The mountainous Qingyi River watershed in the southwest, China, had experienced significant climate change in the past three decades. It is necessary to investigate the hydrologic responses to these changes. Therefore, the effect of climate change on evapotranspiration (ET), surface runoff, baseflow and streamflow were assessed using Variable Infiltration Capacity (VIC) hydrologic model. The Mann-Kendall test analysis was first used to identify the long-term change in precipitation and temperature over the period of 1980-2010. It revealed that there is a significant change in annual temperature particularly in February, March, July and September, whereas an insignificant change in annual precipitation was founded. Hydrologic simulations show that hydrologic responses to climate change were varied from region to region. Surface runoff was more sensitive than ET and baseflow. Monthly variation of the hydrologic processes, especially the change in surface runoff, was mainly attributed to seasonal variation in precipitation. The results of this research can be a useful source of information for the decision making in water resources management and protection. © (2014) Trans Tech Publications, Switzerland.


Wang T.,Huazhong University of Science and Technology | Zhou J.,Huazhong University of Science and Technology | Jiang Y.,Flood Control and Drought Relief Office of Hubei Province | Weng Z.,Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute | And 2 more authors.
Journal of Natural Disasters | Year: 2016

Refuge migration in the flood attack makes up an important part of the emergency refuge system. A reasonable refuge migration can effectively reduce the social, economic losses and casualties induced by flood disaster. In view of seeking the optimal evacuation path in the flood disaster, a new network-flow-based migration strategy model which considers road classification, capacity of shelters, evacuation unit, and the traffic jam in the evacuation process was proposed in this paper, and the Jingjiang flood diversion area was taken as the research object to validate its effectiveness. Also, the result from the network flow-based model was compared with the existing evacuation scheme. The comparison showed that, the new evacuation strategy reduced time-consumption and route length, and relieved the congestion in the evacuation process. The proposed new network flow model has good applicability. It can be also applied to other flood impact areas. © 2016, Science Press. All rights reserved.


Lei J.,Huazhong University of Science and Technology | Nian F.,Huazhong University of Science and Technology | Nian F.,Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute | Feng G.,Huazhong University of Science and Technology | And 3 more authors.
Chinese Journal of Environmental Engineering | Year: 2016

Eutrophication is the major main negative consequence of dredging in landscape water. To study the combined effects coation of dredging and microbial remediation, three different groupstreatments, which were classified as dredging, microbial remediation, and remediation after dredging, were studied based using on a simulated laboratory model. The results showed that the release of ammonia was reduced in dredged water and that microbial activities stimulated the releasing of ammonia, which increased the risk for eutrophication. However, nNitrification was increased while and denitrification was weakened after dredging, thus retarding total nitrogen removal. Therefore, supplementationed with nitrogen cycle relatedbeneficial microorganisms could stimulate denitrification, to remove dissolved nitrogen, and mediate the precipitation and deposition of nitrogen in to the sediments, which as has been observed provided for during the bioremediation of eutrophic lakes. This study confirmed that combining dredging with microbial remediation reduces the accumulation of nitrogen and eliminates the risk of blue algae blooms. Thus, the combined technique is dredging was an effective way strategy to for stabilizinge water quality by reaccumulation nitrogen and of blue algae bloom. © 2016, Science Press. All right reserved.


Cai J.,China Three Gorges University | Cai J.,Hubei Provincial Water Resources and Hydropower Planning Survey and Design Institute | Liu J.,China Three Gorges University
Yantu Lixue/Rock and Soil Mechanics | Year: 2013

A large three-dimensional model of double hole four dimensional Danba hydropower station diversion tunnel excavation is established, and rock mechanics are calculated by using the Mohr-Coulomb model finite element analysis method and unloading rock mass theory and method, and the effect of stress on tunnel is considered to excavate in different depths of tunnel face, from the hole to a certain depth. The displacement changes of tunnel faces at different key points at each excavation are counted. In comparison, the depth of the best tunnel face propulsion should be selected. Under the propulsion depth, the amount of reserved displacements at different segments and locations of holes is counted to provide data support of necessity of advanced support so as to ensure the construction process successfully. It provides references for other similar engineering design.

Discover hidden collaborations