Entity

Time filter

Source Type


Wu R.,Hubei Academy of Agricultural Science | Wu R.,Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding | Wu R.,Luoyang Pulike Bio engineering Co. | Liu Z.,Hubei Academy of Agricultural Science | And 7 more authors.
Zoonoses and Public Health | Year: 2011

Swine influenza viruses H1N1 and H3N2 have been reported in the swine population worldwide. From June 2008 to June 2009, we carried out serological and virological surveillance of swine influenza in the Hubei province in central China. The serological results indicated that antibodies to H1N1 swine influenza virus in the swine population were high with a 42.5% (204/480) positive rate, whereas antibodies to H3N2 swine influenza virus were low with a 7.9% (38/480) positive rate. Virological surveillance showed that only one sample from weanling pigs was positive by RT-PCR. Phylogenetic analysis of the hemagglutinin and neuraminidase genes revealed that the A/Sw/HB/S1/2009 isolate was closely related to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses. In conclusion, H1N1 influenza viruses were more dominant in the pig population than H3N2 influenza viruses in central China, and infection with avian-like H1N1 viruses persistently emerged in the swine population in the area. © 2011 Blackwell Verlag GmbH. Source


Gaur U.,Hubei Academy of Agricultural Science | Gaur U.,Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding | Xiong Y.Y.,Sun Yat Sen University | Luo Q.P.,Hubei Academy of Agricultural Science | And 13 more authors.
Molecular Biology Reports | Year: 2014

Different pig breeds have shown differential susceptibility to the pathogen infection; however, molecular mechanisms of the infection susceptibility are not fully understood. Streptococcus suis type 2 (SS2) is an important zoonotic pathogen. To identify the genes responsible for infection susceptibility, pigs from two different breeds (Enshi black and Landrace) were inoculated with SS2 and their spleen transcriptome profiles were investigated in the present study. The differentially expressed genes (DEGs) were analyzed from infected versus control pigs in each breed, and then compared between both pig breeds. Enshi black pig showed more DEGs than Landrace (830 vs. 611) and most of these were due to down-regulated genes (543 vs. 387). However some DEGs were uniquely expressed in one breed, some were expressed in opposite direction in both breeds. A number of candidate genes and pathways are identified which might be involved in susceptibility to SS2, for example, MMP9 and Resistin were only significantly expressed in Landrace. NPG3 and PMAP23 were up-regulated in Landrace whereas down-regulated in Enshi black. LENG8 in control Landrace have inherently higher expression than control Enshi black. IGKV6 is down-regulated in Landrace but up-regulated in Enshi black. Overall, the transcriptome profiles are consistent with the clinical signs, i.e. the Enshi black is more susceptible to SS2 infection than Landrace. This is the first study to identify differential gene expression between indigenous and modern commercial pigs after in vivo SS2 infection using RNA-seq. The significant DEGs in splenic profiles between two pig breeds suggested considerable involvement of genetic background in susceptibility to the SS2 infection in pigs. © 2014, Springer Science+Business Media Dordrecht. Source


Gaur U.,Hubei Academy of Agricultural Science | Gaur U.,Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding | Li K.,Chinese Academy of Agricultural Sciences | Mei S.,Hubei Academy of Agricultural Science | And 3 more authors.
Journal of Applied Genetics | Year: 2013

Although the majority of genes are expressed equally from both alleles, some genes are differentially expressed. Organisms possess characteristics to preferentially express a particular allele under regulatory factors, which is termed allele-specific expression (ASE). It is one of the important genetic factors that lead to phenotypic variation and can be used to identify the variance of gene regulation factors. ASE indicates mechanisms such as DNA methylation, histone modifications, and non-coding RNAs function. Here, we review a broad survey of progress in ASE studies, and what this simple yet very effective approach can offer in functional genomics, and possible implications toward our better understanding of the underlying mechanisms of complex traits. © 2013 Institute of Plant Genetics, Polish Academy of Sciences, Poznan. Source


Wu H.,Hubei Academy of Agricultural Science | Wu H.,Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding | Gaur U.,Hubei Academy of Agricultural Science | Gaur U.,Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding | And 18 more authors.
Journal of Applied Genetics | Year: 2015

Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio≧2 or ≦0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance. © 2015, Institute of Plant Genetics, Polish Academy of Sciences, Poznan. Source

Discover hidden collaborations