Entity

Time filter

Source Type


Hu C.,Hubei Academy of Agricultural Science | Qi Y.,Huazhong Agricultural University
European Journal of Agronomy | Year: 2013

An eleven years long-term field experiment for soil fertility and crop yield improvement had been conducted at China Agricultural University's Qu-Zhou experiment station since 1993. The field experiment included three treatments: effective microorganisms (EM) compost treatment; traditional compost treatment; and unfertilized control. The results revealed that long-term application of EM compost gave the highest values for the measured parameters and the lowest values in the control plot. The application of EM in combination with compost significantly increased wheat straw biomass, grain yields, straw and grain nutrition compared with traditional compost and control treatment. Wheat straw biomass, grain yields, straw and grain nutrition were significantly higher in compost soils than in untreated soil. This study indicated that application of EM significantly increased the efficiency of organic nutrient sources. © 2012 Elsevier B.V. Source


Jiang M.,Auburn University | Liu S.,Auburn University | Du X.,Hubei Academy of Agricultural Science | Wang Y.,Auburn University
Food Hydrocolloids | Year: 2010

Gelatin from catfish skin was obtained by thermal extraction. Triacetin was added to the gelatin at 0, 50, 100, and 150% of the gelatin content to improve the hydrophobic properties of the resulting films. Tween 80 (10% of triacetin amount) was also added as an emulsifier. Internal microstructures of the films were examined using a transmission X-ray microscope (TXM). Other film properties, such as thickness, mechanical properties, water vapor permeability, water solubility, light transparency, and thermal properties were also evaluated. Possible relationships between the internal microstructures and the film properties were hypothesized. The triacetin distribution changed from homogeneous to heterogeneous with its increased content in the films. The addition of triacetin resulted in decreased tensile strength (TS) and increased percent elongation (%E), water solubility, UV and visible light barrier properties, and protein denaturation temperature of the films. Water vapor permeability of the films increased in some treatments (100% and 150% triacetin) possibly due to the heterogeneous distribution of the triacetin and also the increased Tween 80 amount in the films. © 2009 Elsevier Ltd. All rights reserved. Source


Zhao Q.,Wuhan University | Zou J.,Huazhong Agricultural University | Meng J.,Huazhong Agricultural University | Mei S.,Hubei Academy of Agricultural Science | Wang J.,Wuhan University
PLoS ONE | Year: 2013

Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassica rapa, Brassica carinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B.rapa, were involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant-pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the Brassica allohexaploid can generate extensive transcriptomic diversity compared with its parents. These changes may contribute to the normal growth and reproduction of allohexaploids. © 2013 Zhao et al. Source


Zhao Z.,Nanjing University | Wang Q.,Nanjing University | Wang K.,Hubei Academy of Agricultural Science | Brian K.,Hill International | And 2 more authors.
Bioresource Technology | Year: 2010

An endophytic Bacillus vallismortis ZZ185 was isolated from healthy stems of the plant Broadleaf Holly (Ilex latifolia Thunb) collected in Nanjing, China. Both the culture filtrate and the n-butanol extract of strain ZZ185 showed strong growth inhibition activity in vitro against the phytopathogens Fusarium graminearum, Alternaria alternata, Rhizoctonia solani, Cryphonectria parasitica and Phytophthora capsici. The results showed that the filtrate and extract reduced the symptoms of wheat seedlings infected with A. alternata and F. graminearum by about 90% and 50%, respectively, based on the comparison of the lengths of zones on the seminal roots showing cortical browning with those of the roots of uninfected controls. The antifungal activity of the culture filtrate was significantly correlated with cell growth of strain ZZ185. The active metabolite in the filtrate was relatively thermally stable with more than 50% of the antifungal activity of the culture filtrate being retained even after being held at 121 °C for 30 min. Meanwhile, the antifungal activity of the filtrate against the growth of A. alternata and F. graminearum remained almost unchanged (>75%) when the culture was exposed to a pH ranging from 1 to 8, but significantly reduced after the filtrate had been exposed to basic conditions. From the n-butanol extract of the filtrate, the antifungal compounds were isolated as a mixture of Bacillomycin D (n-C14) and Bacillomycin D (iso-C15). The strong antifungal activity implied that the endophytic B. vallismortis ZZ185 and its bioactive components might provide an alternative resource for the biocontrol of plant diseases. © 2009 Elsevier Ltd. Source


Tang S.,Shaoguan University | Dong X.,Shaoguan University | Zhang W.,Hubei Academy of Agricultural Science
Annales d'Endocrinologie | Year: 2014

Obestatin, originally identified and purified from rat stomach extracts, was reported to bind to orphan G protein-coupled receptor, GPR39, and inhibit appetite and gastric motility. This study was conducted to investigate the effects of porcine obestatin on proliferation, differentiation and apoptosis of porcine preadipocytes isolated from subcutaneous fat of piglets. At indicated times of culture, morphology of preadipocytes and accumulated lipid droplets within the cells were identified by invert microscope. After treating with obestatin (0, 0.1, 1, 10 and 100. nM), cell proliferation was measured by MTT method and protein expression of CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), Caspase-7 and Caspase-9 was determined by Western Blot, mRNA expression of GPR39 and Caspase-3 was analyzed by RT-PCR, and the activity of Caspase-3 was measured by spectrophotometric method. The results showed that obestatin had no effect on GPR39 expression, while promotes the optical density (OD) value of cells, enhanced protein expression of PPARγ and C/EBPa, decreased mRNA expression and activity of Caspase-3, and inhibited protein expression of Caspase-7 and Caspase-9 in a dose-dependent manner. These results suggested that obestatin enhance proliferation and differentiation of preadipocytes promoting PPARγ and C/EBPa expression, and inhibiting preadipocyte apoptosis by decreasing expression of Caspase-3, Caspase-7 and Caspase-9. © 2013 Elsevier Masson SAS. Source

Discover hidden collaborations