Time filter

Source Type

Wuhan, China

The Huazhong University of Science and Technology is a public, coeducational research university located in Wuhan, Hubei province, China. As a national key university, HUST is directly affiliated to the Ministry of Education of China. HUST has been referred toas the flagship of China's higher education system after the Chinese Civil War. HUST manages Wuhan National Laboratories for Opto-electronics at Wuchang, which is one of the five national laboratories in China. Wikipedia.

Ma R.,Huazhong University of Science and Technology
Nature communications | Year: 2013

Gluconeogenesis is a fundamental feature of hepatocytes. Whether this gluconeogenic activity is also present in malignant hepatocytes remains unexplored. A better understanding of this biological process may lead to novel therapeutic strategies. Here we show that gluconeogenesis is not present in mouse or human malignant hepatocytes. We find that two critical enzymes 11β-HSD1 and 11β-HSD2 that regulate glucocorticoid activities are expressed inversely in malignant hepatocytes, resulting in the inactivation of endogenous glucocorticoids and the loss of gluconeogenesis. In patients' hepatocarcinoma, the expression of 11β-HSD1 and 11β-HSD2 is closely linked to prognosis and survival. Dexamethasone, an active form of synthesized glucocorticoids, is capable of restoring gluconeogenesis in malignant cells by bypassing the abnormal regulation of 11β-HSD enzymes, leading to therapeutic efficacy against hepatocarcinoma. These findings clarify the molecular basis of malignant hepatocyte loss of gluconeogenesis and suggest new therapeutic strategies.

Xu W.,Huazhong University of Science and Technology
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics | Year: 2014

We consider three dimensional Einstein gravity non-minimally coupled to a real scalar field with a self-interacting scalar potential and present the exact black hole formation in three dimensions. Firstly we obtain an exact time-dependent spherically symmetric solution describing the gravitational collapse to a scalar black hole at the infinite time, i.e. in the static limit. The solution can only be asymptotically AdS because of the No-Go theorem in three dimensions which is resulting from the existence of a smooth black hole horizon. Then we analyze their geometric properties and properties of the time evolution. We also get the exact time-dependent solution in the minimal coupling model after taking a conformal transformation. © 2014 The Author.

Ouyang M.,Huazhong University of Science and Technology
Reliability Engineering and System Safety | Year: 2014

Modern societies are becoming increasingly dependent on critical infrastructure systems (CISs) to provide essential services that support economic prosperity, governance, and quality of life. These systems are not alone but interdependent at multiple levels to enhance their overall performance. However, recent worldwide events such as the 9/11 terrorist attack, Gulf Coast hurricanes, the Chile and Japanese earthquakes, and even heat waves have highlighted that interdependencies among CISs increase the potential for cascading failures and amplify the impact of both large and small scale initial failures into events of catastrophic proportions. To better understand CISs to support planning, maintenance and emergency decision making, modeling and simulation of interdependencies across CISs has recently become a key field of study. This paper reviews the studies in the field and broadly groups the existing modeling and simulation approaches into six types: empirical approaches, agent based approaches, system dynamics based approaches, economic theory based approaches, network based approaches, and others. Different studies for each type of the approaches are categorized and reviewed in terms of fundamental principles, such as research focus, modeling rationale, and the analysis method, while different types of approaches are further compared according to several criteria, such as the notion of resilience. Finally, this paper offers future research directions and identifies critical challenges in the field. © 2013 Elsevier Ltd.

Wang B.,Huazhong University of Science and Technology
ACM Computing Surveys | Year: 2011

Sensor networks, which consist of sensor nodes each capable of sensing environment and transmitting data, have lots of applications in battlefield surveillance, environmental monitoring, industrial diagnostics, etc. Coverage which is one of the most important performance metrics for sensor networks reflects how well a sensor field is monitored. Individual sensor coverage models are dependent on the sensing functions of different types of sensors, while network-wide sensing coverage is a collective performance measure for geographically distributed sensor nodes. This article surveys research progress made to address various coverage problems in sensor networks. We first provide discussions on sensor coverage models and design issues. The coverage problems in sensor networks can be classified into three categories according to the subject to be covered. We state the basic coverage problems in each category, and review representative solution approaches in the literature. We also provide comments and discussions on some extensions and variants of these basic coverage problems. © 2011 ACM.

Chen Y.,Huazhong University of Science and Technology
Rheumatology (Oxford, England) | Year: 2013

High mobility group box chromosomal protein 1 (HMGB1) is a ubiquitous highly conserved single polypeptide in all mammal eukaryotic cells. HMGB1 exists mainly within the nucleus and acts as a DNA chaperone. When passively released from necrotic cells or actively secreted into the extracellular milieu in response to appropriate signal stimulation, HMGB1 binds to related cell signal transduction receptors, such as RAGE, TLR2, TLR4 and TLR9, and becomes a proinflammatory cytokine that participates in the development and progression of many diseases, such as arthritis, acute lung injury, graft rejection immune response, ischaemia reperfusion injury and autoimmune liver damage. Only a small amount of HMGB1 release occurs during apoptosis, which undergoes oxidative modification on Cys106 and delivers tolerogenic signals to suppress immune activity. This review focuses on the important role of HMGB1 in the pathogenesis of RA, mainly manifested as the aberrant expression of HMGB1 in the serum, SF and synovial tissues; overexpression of signal transduction receptors; abnormal regulation of osteoclastogenesis and bone remodelling leading to the destruction of cartilage and bones. Intervention with HMGB1 may ameliorate the pathogenic conditions and attenuate disease progression of RA. Therefore administration of an HMGB1 inhibitor may represent a promising clinical approach for the treatment of RA.

Discover hidden collaborations