Wuhan, China

The Huazhong University of Science and Technology is a public, coeducational research university located in Wuhan, Hubei province, China. As a national key university, HUST is directly affiliated to the Ministry of Education of China. HUST has been referred toas the flagship of China's higher education system after the Chinese Civil War. HUST manages Wuhan National Laboratories for Opto-electronics at Wuchang, which is one of the five national laboratories in China. Wikipedia.


Time filter

Source Type

Patent
Huazhong University of Science and Technology | Date: 2014-06-20

A single-degree-of-freedom magnetic vibration isolation device belongs to vibration isolation devices and solves the following problems: the existing active and passive combined vibration reduction system is complex in structure, needs energy supply, and has low reliability. The present invention includes a metal conductor sleeve, a base, an upper annular permanent magnet, a lower annular permanent magnet, a connecting rod and a center permanent magnet; poles of the upper annular permanent magnet and the lower annular permanent magnet facing to each other have reverse polarity, which are connected to an upper end and a lower end of an inner wall of the metal conductor sleeve respectively; the center permanent magnet is concentrically sleeved on the connecting rod and fixedly connected therewith, and the center permanent magnet is located between the upper annular permanent magnet and the lower annular permanent magnet, and is capable of moving axially together with the connecting rod between the upper annular permanent magnet and the lower annular permanent magnet; and the pole of the center permanent magnet facing to the poles of the upper annular permanent magnet and the lower annular permanent magnet have reverse polarity. The present invention is simple in structure, does not need energy supply, has high reliability, and can generate a static magnetic force and a dynamic magnetic force. Connecting the device according to the present invention with a passive vibration isolation system in parallel can effectively improve the passive vibration isolation performance of the original system.


Patent
Huazhong University of Science and Technology | Date: 2015-06-12

The invention discloses a numerical control (NC) system based on a virtual host computer, the NC system comprising the virtual host computer arranged on a remote server, a local lower computer and a human-machine interactive device for human-machine interaction. The human-machine interactive device is used for providing a human-machine interactive input/output interface. The virtual host computer integrates a human-machine interactive module, a non-real-time/half-real-time task execution unit and a lower-computer control unit, and is used for receiving a NC machining instruction, processing the instruction to form a machine-tool control instruction through the non-real-time/half-real-time task execution unit, and transmitting the control data to the local lower computer through the lower-computer control unit by utilizing a network. The local lower computer controls a machine tool to execute real-time motion control and logic control. The NC system employs a new architecture formed by the upper computer and the lower computer by utilizing virtualization technology, and solves the restriction problems of data processing capability, HMI function expansion and remote machining of a conventional NC system.


Patent
Huazhong University of Science and Technology | Date: 2014-04-02

The present invention discloses an active airbearing device, including a airbearing body, a gas film active adjusting unit, a support body detection unit and a drive control unit, wherein the support body detection device measures a state of airbearing, the drive control system generates a control signal according to a detection signal, drives and controls the gas film active adjusting device to generate an active action, and dynamically adjusts the form of gas films on a airbearing surface, so as to dynamically adjust pressure distribution of gaps between the gas films of the airbearing device, thereby improving dynamic stiffness characteristics of the airbearing. Through the present invention, the dynamic stiffness characteristics of the airbearing can be improved significantly, and the purpose of stabilizing the airbearing is achieved; in addition, the active airbearing device according to the present invention also has the characteristics of a compact structure, convenient operation and control, and high precision, and thus is especially suitable for occasions such as ultra-precision machining or high speed spindle which has high requirements for dynamic stiffness of support.


Patent
Huazhong University of Science and Technology | Date: 2017-02-01

A multi-port DC-DC autotransformer, which is used for realizing interconnected transmission among a plurality of DC systems of different voltage levels. The autotransformer comprises 2N-1 current converters. The 2N-1 current converters are connected in series in sequence at a DC side and are connected to an AC line at an AC side, and the positive electrode of the ith current converter and the negative electrode of the (2N-i)th current converter of the 2N-1 current converters connected in series in sequence are respectively and correspondingly connected to the positive electrode and the negative electrode of the ith DC system, where N is the number of DC systems, and i is the serial number of the current converter. Further disclosed are a capacity design method for the current converters in the autotransformer and a control method for the autotransformer. The autotransformer enables most of the power transmitted among various DC systems to be directly transmitted through the electrical interconnection among the various DC systems without DC-AC-DC conversion, so that the rated voltage and the operating loss of the various current converters are greatly reduced, thereby reducing operating costs.


Patent
Huazhong University of Science and Technology | Date: 2017-01-04

A method for preparing a sericin hydrogel, the method including: 1) weighing a cocoon of a fibroin-deficient mutant silkworm, Bombyx mori, extracting the cocoon by an aqueous solution of LiBr or LiCl, dialyzing an extracted solution to yield a sericin solution having a concentration of a non-degraded sericin of between 0.1 and 4 wt. %; and 2) concentrating the sericin solution to a concentration of between 1.5 and 10 wt. %, adding a crosslinking agent to the concentrated sericin solution at a ratio of between 2 and 500 L of the crosslinking agent per each milliliter of the sericin solution, fully blending the crosslinking agent with the concentrated sericin solution, and keeping a resulting mixture at the temperature of between 4 and 45C for between 5 s and 36 hrs to yield a hydrogel.


The disclosure relates to a bio-artificial periosteum based on micropatterning of biomimetic mineralized calcium-phosphorus nanoparticles and a method for manufacturing the same. The method includes: first, a micropatterned biomimetic mineralized calcium-phosphorus nanoparticle layer is manufactured on a surface of an inert substrate; then, an organic polymer is cross-linked and solidified on the micropatterned biomimetic mineralized calcium-phosphorus nanoparticle layer; at last, the inert substrate is removed, so that the bio-artificial periosteum based on micropatterning of biomimetic mineralized calcium-phosphorus nanoparticles is obtained. The bio-artificial periosteum not only simulates the composition of natural bone in material components, but also realizes high degree of biomimesis in micro-nano size in structure. Moreover, the distribution of bone marrow mesenchymal stem cells can be regulated by the bio-artificial periosteum, so that the cells can be effectively defined on a surface of calcium-phosphorus particle micropattern and a high degree of ordered alignment thereof can be realized.


Patent
Huazhong University of Science and Technology | Date: 2017-02-22

A tunable laser, including: a gain section configured to provide an optical gain for lasing; a multi-channel splitter section configured to split an input signal into multiple outputs; and a multi-channel reflection section, the multi-channel reflection section including multiple arms of unequal lengths and configured to provide an optical feedback and a mode selection function for the laser to work. The gain section, the multi-channel splitter section, and the multi-channel reflection section are sequentially connected in that order. The facet of the gain section away from the multi-channel splitter section is an optical output facet of the laser. When arranging the multiple arms of the multi-channel reflection section in an order according to their lengths, length difference between adjacent arms are unequal. Facets of the multiple arms away from the multi-channel splitter section are coated with reflection films.


Patent
Huazhong University of Science and Technology | Date: 2016-03-08

Provided is an operating method of a full-bridge sub-module (FBSM)-based modular multilevel converter for HVDC transmission with AC-side voltage boosting. The peak value of the AC-side voltage is increased under a constant DC-link voltage by using FBSMs negative output voltage under steady state, wherein keeping the semiconductors current rating constant during AC-side voltage boosting is in favor of reducing converter cost by decreasing energy interaction between the upper and lower arms in a leg, and further capacitance value of FBSMs capacitor under a constant capacitor voltage ripple, keeping the RMS value of AC-side current constant during AC-side voltage boosting can effectively improve transmission capacity of the converter while reducing converter cost, and keeping converter transmission capacity constant during AC-side voltage boosting can reduce RMS value of arm currents while reducing converter cost, thereby reducing power loss of FBSMs and improving converter efficiency.


Patent
Huazhong University of Science and Technology | Date: 2017-06-21

This disclosure provides a device for nanoparticles atomic layer decoration based on planetary fluidization, comprising a motor (2), a reaction chamber, a planet carrier (13), a cartridge (6), and gas manifolds. Before coating, the nanoparticles are firstly put into the cartridges, and then the cartridges are settled onto the hollow planet wheels (9). The planetary mechanism drives the cartridge to conduct planetary movement. Along the radial direction, the nanoparticles in the cartridge suffer the centrifugal force generated by the revolution, and therefore intend to move outwards and stack on the walls of the cartridges which locate on the connecting line from the revolution axis to spin axis. In the meantime, the circumferential friction force generated by the spin of cartridges compels the nanoparticles to rotate inside the cartridge, achieving centrifugal fluidization. In the axis direction of said planet wheel (9), the nanoparticles are fluidized by the axial vertical fluidizing gas, and exhibit uniform fluidization as traditional vertical fluidized bed. During modification process, precursor gas and purge gas alternatively enter the cartridge through the planet carrier, and the precursor molecules are absorbed on the surface of the nanoparticles upon pulse stage, forming an atomic layer film. Repeating the deposition cycles will finally obtain the desired coating thickness. The coupling of the centrifugal and vertical fluidization exerts shear force 30 times greater than gravity on the agglomerates, breaks them apart, and overcome the axial non-uniform distribution in the centrifugal fluidized bed, realizing more uniform fluidization and coating for each individual nanoparticle. In addition, the device of the invention can effectively improve nanoparticles coating percentage and uniformity, and significantly increase the coating efficiency with high batch processing ability.


The invention discloses a perovskite solar cell and a method of fabrication thereof. The perovskite solar cell sequentially comprises a transparent electrode, a mesoporous P-I-N framework and a counter electrode from the bottom to top; the mesoporous P-I-N framework is composed of an n-type semiconductor layer, an insulating layer, and a p-type semiconductor layer in a sequentially stacked mode, and the n-type semiconductor layer, the insulating layer and the p-type semiconductor layer all comprise mesopores filled with a perovskite material. The preparation method sequentially includes preparing the mesoporous P-I-N framework on a transparent conductive substrate through a spin-coating method or a screen printing method, filling with the perovskite material and preparing the counter electrode layer.

Loading Huazhong University of Science and Technology collaborators
Loading Huazhong University of Science and Technology collaborators