Entity

Time filter

Source Type

Chengdu, China

Qi H.,Southwest University | Huang Y.,Chengdu University of Traditional Chinese Medicine | Yang Y.,Southwest University | Dou G.,Southwest University | And 6 more authors.
BMC Complementary and Alternative Medicine | Year: 2016

Background: Increased platelet aggregation is implicated in the pathogenesis of ischemic stroke and anti-platelet strategy may contribute to its therapy. Panaxatriol saponin (PTS), the main components extracted from Panax notoginseng, has been shown to be efficacious in the prevention and treatment of ischemic stroke in China. The aim of this study is to determine the anti-platelet activity and explore the underlying mechanisms. Methods: Inhibitory effect of PTS and its main ginsenosides on agonists-induced platelet aggregation was determined using rabbit or human platelets. Intracellular Ca2+ concentration ([Ca2+]i) mobilization was detected with fura-2/AM probe. MAPKs phosphorylation was determined by Western blotting. Results: Our results showed PTS inhibited the rabbit platelet aggregation induced by various agonists (collagen, thrombin and ADP). The three main ginsenosides (Rg1, Re and R1) existing in PTS also showed anti-platelet activity, while their combination exhibited no synergistic effect on rabbit platelet aggregation. Further study demonstrated that PTS and its main ginsenosides also exhibited inhibitory effect on human platelet aggregation. Mechanism study demonstrated that pre-treatment with PTS inhibited the agonists-induced intracellular calcium mobilization. Moreover, PTS significantly suppressed the activation of both ERK2 and p38 by the agonists via reducing the phosphorylation of ERK2 and p38. Conclusion: We proved that PTS is effective in anti-platelet aggregation, which may, at least in part, be related to the suppression of intracellular calcium mobilization and ERK2/p38 activation. This study may provide one reasonable explanation for the efficacy of PTS on the prevention and treatment of ischemic stroke. © 2016 The Author(s). Source


Huang Y.,Chengdu University of Traditional Chinese Medicine | Yu J.,Southwest University | Wan F.,Huasun Group Co. | Zhang W.,Huasun Group Co. | And 4 more authors.
Oxidative Medicine and Cellular Longevity | Year: 2014

Panaxatriol saponins (PTS), the main components extracted from Panax notoginseng, have been shown to be efficacious in the prevention and treatment of cerebrovascular diseases in China. NF-E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant and cytoprotective responses to oxidative stress, has received particular attention as a molecular target for pharmacological intervention of ischemic diseases. The aim of this study was to characterize the effect of PTS on the activation of Nrf2 signaling pathway and the potential role in its protective effect. We found that PTS induced heme oxygenase-1 (HO-1) expression in PC12 cells via activating Nrf2 signaling pathway. Phosphatidylinositol 3-kinase (PI3K)/Akt kinase was involved in the upstream of this PTS activated pathway. Moreover, combination of the main components in PTS significantly enhanced the expression of Nrf2 mediated phase II enzymes. Importantly, the protective effect of PTS against oxygen-glucose deprivation-reperfusion (OGD-Rep) induced cell death was significantly attenuated by PI3K inhibitor and antioxidant response element (ARE) decoy oligonucleotides, suggesting that both PI3K/Akt and Nrf2 signaling pathway are essential during this protective process. Taken together, our results suggest that PTS may activate endogenous cytoprotective mechanism against OGD-Rep induced oxidative injury via the activation of PI3K/Akt and Nrf2 signaling pathway. © 2014 Yongliang Huang et al. Source

Discover hidden collaborations