Entity

Time filter

Source Type


Hong F.,Huaiyin Normal UniversityHuaian223300 China | Wu N.,Huaiyin Normal UniversityHuaian223300 China | Ge Y.,Huaiyin Normal UniversityHuaian223300 China | Zhou Y.,Huaiyin Normal UniversityHuaian223300 China | And 6 more authors.
Journal of Biomedical Materials Research - Part A | Year: 2016

Titanium dioxide nanoparticles (TiO2 NPs) have been demonstrated to damage the kidneys. However, whether chronic nephritis leads to renal fibration or the fibrosis is associated with the activation of TGF-β/Smads/p38MAPK pathway caused by TiO2 NPs exposure is not well understood. Forty male mice were separately exposed to 0, 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 6 months. Renal biochemical functions and levels of TGF-β/Smads/p38MAPK pathway-related markers and extracellular matrix (ECM) expression in the kidneys were investigated. The findings showed that subchronic TiO2 NPs exposure increased levels of urinary creatisix (Cr), N-acetyl-glucosaminidase, and vanin-1, resulted in severe renal inflammation and fibration. Furthermore, TiO2 NP exposure upregulated expression of transforming growth factor-β1 (TGF-β1, 0.07- to 2.72-fold), Smad2 (0.42- to 1.63-fold), Smad3 (0.02- to 1.94-fold), ECM (0.15- to 2.75-fold), α-smooth muscle actin (0.14- to 3.06-fold), p38 mitogen-activated protein kinase (p38MAPK, 0.11- to 3.78-fold), and nuclear factor-κB (0.4- to 2.27-fold), and downregulated Smad7 (0.05- to 0.61-fold) expression in mouse kidney. Subchronic TiO2 NPs exposure induced changes of renal characteristics towards inflammation and fibration may be mediated via TGF-β/Smads/p38MAPK pathway, and the uses of TiO2 NPs should be carried out cautiously, especially in humans. © 2016 Wiley Periodicals, Inc. Source

Discover hidden collaborations