Huaiyin Normal UniversityHuaian223300 China

Laboratory for, China

Huaiyin Normal UniversityHuaian223300 China

Laboratory for, China
SEARCH FILTERS
Time filter
Source Type

Hong F.,Huaiyin Normal UniversityHuaian223300 China | Wang L.,Library of Soochow UniversitySuzhou
Journal of Biomedical Materials Research - Part A | Year: 2017

Titanium dioxide nanoparticles (TiO2 NPs) are increasingly used in daily life, in industry, and in environmental clearing, but their potential neurodevelopmental toxicity has been highly debated. In this study, we explored whether TiO2 NPs inhibited development of dendritic morphology and identified possible molecular mechanisms associated with this inhibition in primary cultured rat hippocampal neurons. Results showed that TiO2 NPs decreased neurite length, the number of branches and the spine density, and impaired mitochondrial function in the developing neurons. Furthermore, TiO2 NPs significantly reduced the expression of several proteins involved in canonical Wnt3a/β-catenin signaling including Wnt3a, β-catenin, p-GSK-3β, and CyclinD1 and conversely, elevated GSK-3β expression. In addition to altering expression of proteins involved in canonical Wnt3a/β-catenin signaling, TiO2 NPs decreased expression of proteins invovled in non-canonical Wnt signaling, including, MKLP1, CRMP3, ErbB4, and KIF17. Taken together, these results indicate that suppression of dendritic development caused by TiO2 NPs is associated with inhibition of activation of the Wnt/β-catenin pathway or non-canonical Wnt pathway-induced expression of microtubule cytoskeletal components in the developing neurons. © 2017 Wiley Periodicals, Inc.


Hong F.,Huaiyin Normal UniversityHuaian223300 China | Zhou Y.,Jiangsu Food and Pharmaceutical Science CollegeHuaian223303
Journal of Biomedical Materials Research - Part A | Year: 2017

Although numerous studies have demonstrated that titanium dioxide nanoparticles (TiO2 NPs) can be accumulated in various animal organs and can cause toxicity, there is currently only limited data regarding reproductive toxicity especially on the toxic mechanisms of TiO2 NPs in Sertoli cells. In order to investigate the mechanism of reproductive toxicity, primary cultured rat Sertoli cells were exposed to 5, 15, or 30 μg/mL TiO2 NPs for 24 h, and TiO2 NPs internalization, expression of PKC (p-PKC) and p38 MAPK (p-p38 MAPK) as well as calcium homeostasis were examined. Our findings demonstrated that TiO2 NPs crossed the membrane into the cytoplasm or nucleus, and significantly suppressed cell viability of primary cultured rat Sertoli cells in a concentration-dependent manner. Furthermore, immunological dysfunction caused by TiO2 NPs was involved in the increased expression of NF-κB, TNF-α, and IL-1β, and decreased IκB expression. TiO2 NPs significantly decreased Ca2+-ATPase and Ca2+/Mg2+-ATPase activity and enhanced intracellular Ca2+ levels, and up-regulated the expression of p-PKC and p-p38 MAPK in a dose-dependent manner in primary cultured rat Sertoli cells. Taken together, these findings indicate that TiO2 NPs may induce immunological dysfunction of primary cultured rat Sertoli cells by stimulating the Ca2+/PKC/p38 MAPK cascade, which triggers NF-κB activation and ultimately induces the expression of inflammatory cytokines in primary cultured rat Sertoli cells. © 2017 Wiley Periodicals, Inc.


Hong F.,Huaiyin Normal UniversityHuaian223300 China | Zhou Y.,Huaiyin Normal UniversityHuaian223300 China
Environmental Toxicology | Year: 2017

Titanium dioxide nanoparticles (TiO2 NPs) have been extensively used in industry, medicine, and daily life, and have shown potential toxic effects for animals or humans. We noted that the effects of TiO2 NPs on the immune system and its mechanism of action in animals or humans have not been elucidated. Thus, mice were exposed to the TiO2 NPs (0, 1.25, 2.5, or 5 mg kg-1 body weight) for 9 consecutive months. Exposure to TiO2 NPs was accumulated in the thymus, leading to a decrease in body weight and increases in the weight of the thymus or thymus indices. In the blood, exposure to TiO2 NPs significantly decreased white blood cell, red blood cell, reticulocyte, haemoglobin, and mean corpuscular haemoglobin concentration; and increased mean corpuscular volume, mean corpuscular haemoglobin, platelets, and mean platelet volume. The reductions of lymphocyte subsets, including CD3+, CD4+, CD8+, B cell, and natural killer cell, were observed in the TiO2 NP-treated mouse thymus. Appearance of starry-sky aspect of the cortex that is given by the body of macrophages, bleeding, severe hemolysis or congestion, fatty degeneration, and cell apoptosis or necrosis were observed in the thymus following TiO2 NPs exposure. Importantly, TiO2 NPs increased expression of nucleic factor-κB(NF-κB), IκB kinase1/2, interleukin-1β, interleukin -4, regulated upon activation normal T-cell expressed and secreted, cyclooxygenase 2, neutrophil gelatinase-associated lipocalin, purinergic receptors-7, interferon-inducible protein 10, hypoxia inducible factor 1-α, p-c-Jun N-terminal kinase, p-p38, and p-extracellular signal-regulated kinase 1/2 protein, respectively; whereas suppressed expression of IκB, peroxisome proliferater-activated receptor-γ, trefoil factor 1, peroxisome proliferator activated receptor gamma coactivator-1α, and prostaglandin E2 proteins in the thymus, respectively. Taken together, these results suggest that TiO2 NPs exerts toxic effects on lymphoid organs and T cell and innate immune cell homeostasis in mice and that these immunotoxic potential effects may result from the activation of NF-κB-mediated mitogen-activated protein kinases (MAPKs) pathway. © 2017 Wiley Periodicals, Inc.


Hong F.,Huaiyin Normal UniversityHuaian223300 China | Wu N.,Huaiyin Normal UniversityHuaian223300 China | Ge Y.,Huaiyin Normal UniversityHuaian223300 China | Zhou Y.,Huaiyin Normal UniversityHuaian223300 China | And 6 more authors.
Journal of Biomedical Materials Research - Part A | Year: 2016

Titanium dioxide nanoparticles (TiO2 NPs) have been demonstrated to damage the kidneys. However, whether chronic nephritis leads to renal fibration or the fibrosis is associated with the activation of TGF-β/Smads/p38MAPK pathway caused by TiO2 NPs exposure is not well understood. Forty male mice were separately exposed to 0, 2.5, 5, or 10 mg/kg body weight TiO2 NPs for 6 months. Renal biochemical functions and levels of TGF-β/Smads/p38MAPK pathway-related markers and extracellular matrix (ECM) expression in the kidneys were investigated. The findings showed that subchronic TiO2 NPs exposure increased levels of urinary creatisix (Cr), N-acetyl-glucosaminidase, and vanin-1, resulted in severe renal inflammation and fibration. Furthermore, TiO2 NP exposure upregulated expression of transforming growth factor-β1 (TGF-β1, 0.07- to 2.72-fold), Smad2 (0.42- to 1.63-fold), Smad3 (0.02- to 1.94-fold), ECM (0.15- to 2.75-fold), α-smooth muscle actin (0.14- to 3.06-fold), p38 mitogen-activated protein kinase (p38MAPK, 0.11- to 3.78-fold), and nuclear factor-κB (0.4- to 2.27-fold), and downregulated Smad7 (0.05- to 0.61-fold) expression in mouse kidney. Subchronic TiO2 NPs exposure induced changes of renal characteristics towards inflammation and fibration may be mediated via TGF-β/Smads/p38MAPK pathway, and the uses of TiO2 NPs should be carried out cautiously, especially in humans. © 2016 Wiley Periodicals, Inc.

Loading Huaiyin Normal UniversityHuaian223300 China collaborators
Loading Huaiyin Normal UniversityHuaian223300 China collaborators