Hospital General Juan Cardona

Ferrol, Spain

Hospital General Juan Cardona

Ferrol, Spain
SEARCH FILTERS
Time filter
Source Type

Adeva-Andany M.M.,Hospital General Juan Cardona | Lopez-Maside L.,Hospital General Juan Cardona | Donapetry-Garcia C.,Hospital General Juan Cardona | Fernandez-Fernandez C.,Hospital General Juan Cardona | Sixto-Leal C.,Hospital General Juan Cardona
Amino Acids | Year: 2017

Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain. © 2017 Springer-Verlag Wien


Adeva M.M.,Hospital General Juan Cardona | Souto G.,U.S. National Institutes of Health | Blanco N.,United Surgical Partners. la Coruna | Donapetry C.,Hospital General Juan Cardona
Metabolism: Clinical and Experimental | Year: 2012

Free ammonium ions are produced and consumed during cell metabolism. Glutamine synthetase utilizes free ammonium ions to produce glutamine in the cytosol whereas glutaminase and glutamate dehydrogenase generate free ammonium ions in the mitochondria from glutamine and glutamate, respectively. Ammonia and bicarbonate are condensed in the liver mitochondria to yield carbamoylphosphate initiating the urea cycle, the major mechanism of ammonium removal in humans. Healthy kidney produces ammonium which may be released into the systemic circulation or excreted into the urine depending predominantly on acid-base status, so that metabolic acidosis increases urinary ammonium excretion while metabolic alkalosis induces the opposite effect. Brain and skeletal muscle neither remove nor produce ammonium in normal conditions, but they are able to seize ammonium during hyperammonemia, releasing glutamine. Ammonia in gas phase has been detected in exhaled breath and skin, denoting that these organs may participate in nitrogen elimination. Ammonium homeostasis is profoundly altered in liver failure resulting in hyperammonemia due to the deficient ammonium clearance by the diseased liver and to the development of portal collateral circulation that diverts portal blood with high ammonium content to the systemic blood stream. Although blood ammonium concentration is usually elevated in liver disease, a substantial role of ammonium causing hepatic encephalopathy has not been demonstrated in human clinical studies. Hyperammonemia is also produced in urea cycle disorders and other situations leading to either defective ammonium removal or overproduction of ammonium that overcomes liver clearance capacity. Most diseases resulting in hyperammonemia and cerebral edema are preceded by hyperventilation and respiratory alkalosis of unclear origin that may be caused by the intracellular acidosis occurring in these conditions. © 2012 Elsevier Inc. All rights reserved.


Adeva M.M.,Hospital General Juan Cardona | Souto G.,U.S. National Institutes of Health | Donapetry C.,Hospital General Juan Cardona | Portals M.,Hospital General Juan Cardona | And 2 more authors.
Neurochemistry International | Year: 2012

Cerebral edema is a potentially life-threatening complication shared by diseases of different etiology, such as diabetic ketoacidosis, acute liver failure, high altitude exposure, dialysis disequilibrium syndrome, and salicylate intoxication. Pulmonary edema is also habitually present in these disorders, indicating that the microcirculatory disturbance causing edema is not confined to the brain. Both cerebral and pulmonary subclinical edema may be detected before it becomes clinically evident. Available evidence suggests that tissue hypoxia or intracellular acidosis is a commonality occurring in all of these disorders. Tissue ischemia induces physiological compensatory mechanisms to ensure cell oxygenation and carbon dioxide removal from tissues, including hyperventilation, elevation of red blood cell 2,3-bisphosphoglycerate content, and capillary vasodilatation. Clinical, laboratory, and necropsy findings in these diseases confirm the occurrence of low plasma carbon dioxide partial pressure, increased erythrocyte 2,3-bisphosphoglycerate concentration, and capillary vasodilatation with increased vascular permeability in all of them. Baseline tissue hypoxia or intracellular acidosis induced by the disease may further deteriorate when tissue oxygen requirement is no longer matched to oxygen delivery resulting in massive capillary vasodilatation with increased vascular permeability and plasma fluid leakage into the interstitial compartment leading to edema affecting the brain, lung, and other organs. Causative factors involved in the progression from physiological adaptation to devastating clinical edema are not well known and may include uncontrolled disease, malfunctioning adaptive responses, or unknown factors. The role of carbon monoxide and local nitric oxide production influencing tissue oxygenation is unclear. © 2012 Elsevier Ltd. All rights reserved.


Souto G.,U.S. National Institutes of Health | Donapetry C.,Hospital General Juan Cardona | Calvino J.,Hospital General Juan Cardona | Adeva M.M.,Hospital General Juan Cardona
Metabolic Syndrome and Related Disorders | Year: 2011

Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosisworsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. © 2011 Mary Ann Liebert, Inc.


Adeva M.M.,Hospital General Juan Cardona | Souto G.,U.S. National Institutes of Health
Clinical Nutrition | Year: 2011

The modern Western-type diet is deficient in fruits and vegetables and contains excessive animal products, generating the accumulation of non-metabolizable anions and a lifespan state of overlooked metabolic acidosis, whose magnitude increases progressively with aging due to the physiological decline in kidney function. In response to this state of diet-derived metabolic acidosis, the kidney implements compensating mechanisms aimed to restore the acid-base balance, such as the removal of the non-metabolizable anions, the conservation of citrate, and the enhancement of kidney ammoniagenesis and urinary excretion of ammonium ions. These adaptive processes lower the urine pH and induce an extensive change in urine composition, including hypocitraturia, hypercalciuria, and nitrogen and phosphate wasting. Low urine pH predisposes to uric acid stone formation. Hypocitraturia and hypercalciuria are risk factors for calcium stone disease. Even a very mild degree of metabolic acidosis induces skeletal muscle resistance to the insulin action and dietary acid load may be an important variable in predicting the metabolic abnormalities and the cardiovascular risk of the general population, the overweight and obese persons, and other patient populations including diabetes and chronic kidney failure. High dietary acid load is more likely to result in diabetes and systemic hypertension and may increase the cardiovascular risk. Results of recent observational studies confirm an association between insulin resistance and metabolic acidosis markers, including low serum bicarbonate, high serum anion gap, hypocitraturia, and low urine pH. © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism.


Adeva M.,Hospital General Juan Cardona | Gonzalez-Lucan M.,Hospital General Juan Cardona | Seco M.,Hospital General Juan Cardona | Donapetry C.,Hospital General Juan Cardona
Mitochondrion | Year: 2013

l-lactate formation occurs via the reduction of pyruvate catalyzed by lactate dehydrogenase. l-lactate removal takes place via its oxidation into pyruvate, which may be oxidized or converted into glucose. Pyruvate oxidation involves the cooperative effort of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. In addition, pyruvate may undergo reversible transamination to alanine by alanine aminotransferase. Enzymes involved in l-lactate metabolism are crucial to diabetes pathophysiology and therapy. Elevated plasma alanine aminotransferase concentration has been associated with insulin resistance. Polymorphisms in the G6PC2 gene have been associated with fasting glucose concentration and insulin secretion. In diabetes patients, pyruvate dehydrogenase is down-regulated and the activity of pyruvate carboxylase is diminished in the pancreatic islets. Inhibitors of fructose 1,6-bisphosphatase are being investigated as potential therapy for type 2 diabetes. In addition, enzymes implicated in l-lactate metabolism have revealed to be important in cancer cell homeostasis. Many human tumors have higher LDH5 levels than normal tissues. The LDHC gene is expressed in a broad range of tumors. The activation of PDH is a potential mediator in the body response that protects against cancer and PDH activation has been observed to reduce glioblastoma growth. The expression of PDK1 may serve as a biomarker of poor prognosis in gastric cancer. Mitochondrial DNA mutations have been detected in a number of human cancers. Genes encoding succinate dehydrogenase have tumor suppressor functions and consequently mutations in these genes may cause a variety of tumors. © 2013 Elsevier B.V.


Adeva-Andany M.M.,Hospital General Juan Cardona | Fernandez-Fernandez C.,Hospital General Juan Cardona | Mourino-Bayolo D.,Hospital General Juan Cardona | Castro-Quintela E.,Hospital General Juan Cardona | Dominguez-Montero A.,Hospital General Juan Cardona
Scientific World Journal | Year: 2014

Metabolic acidosis occurs when a relative accumulation of plasma anions in excess of cations reduces plasma pH. Replacement of sodium bicarbonate to patients with sodium bicarbonate loss due to diarrhea or renal proximal tubular acidosis is useful, but there is no definite evidence that sodium bicarbonate administration to patients with acute metabolic acidosis, including diabetic ketoacidosis, lactic acidosis, septic shock, intraoperative metabolic acidosis, or cardiac arrest, is beneficial regarding clinical outcomes or mortality rate. Patients with advanced chronic kidney disease usually show metabolic acidosis due to increased unmeasured anions and hyperchloremia. It has been suggested that metabolic acidosis might have a negative impact on progression of kidney dysfunction and that sodium bicarbonate administration might attenuate this effect, but further evaluation is required to validate such a renoprotective strategy. Sodium bicarbonate is the predominant buffer used in dialysis fluids and patients on maintenance dialysis are subjected to a load of sodium bicarbonate during the sessions, suffering a transient metabolic alkalosis of variable severity. Side effects associated with sodium bicarbonate therapy include hypercapnia, hypokalemia, ionized hypocalcemia, and QTc interval prolongation. The potential impact of regular sodium bicarbonate therapy on worsening vascular calcifications in patients with chronic kidney disease has been insufficiently investigated. © 2014 María M. Adeva-Andany et al.


Adeva-Andany M.M.,Hospital General Juan Cardona | Fernandez-Fernandez C.,Hospital General Juan Cardona | Sanchez-Bello R.,Hospital General Juan Cardona | Donapetry-Garcia C.,Hospital General Juan Cardona | Martinez-Rodriguez J.,Hospital General Juan Cardona
Atherosclerosis | Year: 2015

Carbonic anhydrases are a group of isoenzymes that catalyze the reversible conversion of carbon dioxide into bicarbonate. They participate in a constellation of physiological processes in humans, including respiration, bone metabolism, and the formation of body fluids, including urine, bile, pancreatic juice, gastric secretion, saliva, aqueous humor, cerebrospinal fluid, and sweat. In addition, carbonic anhydrase may provide carbon dioxide/bicarbonate to carboxylation reactions that incorporate carbon dioxide to substrates. Several isoforms of carbonic anhydrase have been identified in humans, but their precise physiological role and the consequences of their dysfunction are mostly unknown. Carbonic anhydrase isoenzymes are involved in calcification processes in a number of biological systems, including the formation of calcareous spicules from sponges, the formation of shell in some animals, and the precipitation of calcium salts induced by several microorganisms, particularly urease-producing bacteria. In human tissues, carbonic anhydrase is implicated in calcification processes either directly by facilitating calcium carbonate deposition which in turn serves to facilitate calcium phosphate mineralization, or indirectly via its action upon γ-glutamyl-carboxylase, a carboxylase that enables the biological activation of proteins involved in calcification, such as matrix Gla protein, bone Gla protein, and Gla-rich protein. Carbonic anhydrase is implicated in calcification of human tissues, including bone and soft-tissue calcification in rheumatological disorders such as ankylosing spondylitis and dermatomyositis. Carbonic anhydrase may be also involved in bile and kidney stone formation and carcinoma-associated microcalcifications. The aim of this review is to evaluate the possible association between carbonic anhydrase isoenzymes and vascular calcification in humans. © 2015 Elsevier Ireland Ltd.


Adeva-Andany M.,Hospital General Juan Cardona | Lopez-Ojen M.,Policlinica Assistens | Funcasta-Calderon R.,Hospital General Juan Cardona | Ameneiros-Rodriguez E.,Hospital General Juan Cardona | And 3 more authors.
Mitochondrion | Year: 2014

Metabolic pathways involved in lactate metabolism are important to understand the physiological response to exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and alanine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Congenital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce lactate accumulation. Both obese individuals and patients with diabetes show elevated plasma lactate concentration compared to healthy subjects, but there is no conclusive evidence of hyperlactatemia causing insulin resistance. Available evidence suggests an association between defective mitochondrial oxidative capacity in the pancreatic β-cells and diminished insulin secretion that may trigger the development of diabetes in patients already affected with insulin resistance. Several mutations in the mitochondrial DNA are associated with diabetes mellitus, although the pathogenesis remains unsettled. Mitochondrial DNA mutations have been detected in a number of human cancers. d-lactate is a lactate enantiomer normally formed during glycolysis. Excess d-lactate is generated in diabetes, particularly during diabetic ketoacidosis. d-lactic acidosis is typically associated with small bowel resection. © 2014 Elsevier B.V. and Mitochondria Research Society.


PubMed | Hospital General Juan Cardona
Type: Journal Article | Journal: Atherosclerosis | Year: 2015

Carbonic anhydrases are a group of isoenzymes that catalyze the reversible conversion of carbon dioxide into bicarbonate. They participate in a constellation of physiological processes in humans, including respiration, bone metabolism, and the formation of body fluids, including urine, bile, pancreatic juice, gastric secretion, saliva, aqueous humor, cerebrospinal fluid, and sweat. In addition, carbonic anhydrase may provide carbon dioxide/bicarbonate to carboxylation reactions that incorporate carbon dioxide to substrates. Several isoforms of carbonic anhydrase have been identified in humans, but their precise physiological role and the consequences of their dysfunction are mostly unknown. Carbonic anhydrase isoenzymes are involved in calcification processes in a number of biological systems, including the formation of calcareous spicules from sponges, the formation of shell in some animals, and the precipitation of calcium salts induced by several microorganisms, particularly urease-producing bacteria. In human tissues, carbonic anhydrase is implicated in calcification processes either directly by facilitating calcium carbonate deposition which in turn serves to facilitate calcium phosphate mineralization, or indirectly via its action upon -glutamyl-carboxylase, a carboxylase that enables the biological activation of proteins involved in calcification, such as matrix Gla protein, bone Gla protein, and Gla-rich protein. Carbonic anhydrase is implicated in calcification of human tissues, including bone and soft-tissue calcification in rheumatological disorders such as ankylosing spondylitis and dermatomyositis. Carbonic anhydrase may be also involved in bile and kidney stone formation and carcinoma-associated microcalcifications. The aim of this review is to evaluate the possible association between carbonic anhydrase isoenzymes and vascular calcification in humans.

Loading Hospital General Juan Cardona collaborators
Loading Hospital General Juan Cardona collaborators