Entity

Time filter

Source Type

PIACENZA, Italy

Grant
Agency: Cordis | Branch: FP7 | Program: BSG-SME | Phase: SME-1 | Award Amount: 1.44M | Year: 2011

The aim of the MoDeM_IVM project is to develop a new, interactive, web-based Decision Support System (DSS) for integrated management of the vineyard. The SME participants are strongly confident that the project results will improve their competitiveness in a very important and highly profitable market (i.e., grapevine in EU27), because of: i) the DSS is highly innovative and focused to solve practical problems; ii) end-users will draw clear economic and environmental advantages; iii) the EU policies will determine a huge increase of the Internet use in agricultural areas in coming years. The project has 8 partners (3 SMEs and 5 RTD performers) settled in four EU countries; other countries and end-users are involved in some project activities. The project has 8 Work Packages. RTD is mainly in charge to RTD performers but involves also the SMEs. Research is mainly addressed to: i) develop and integrate in a single system automatic sensors and hand-held devices for monitoring all the vineyard components (WP1); ii) develop mathematical models for the key aspects of the vineyard management (WP2); iii) define the best options for managing the vineyard according to the Integrated Production and bring these options into practical guidelines (WP2); iv) optimise decision making based on a cost-benefit analysis that also considers environmental impacts (WP3); v) develop the web-based DSS that: receives real-time input data from the vineyard; uses data for calculating optimised decision supports; shows the decision supports in a clear way (WP4). Dissemination activities (WP5) will be targeted to end users (validation of the DSS in commercial vineyards and seminars), and to the scientific world (international congress, publications and a web-site). Training for the SME staff is aimed at facilitating the take up of results (WP6). Management of the project activities, knowledge, IPR and exploitation of the results by the SMEs have a specific WP (WP7).


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SFS-13-2015 | Award Amount: 5.24M | Year: 2016

MyToolBox mobilises a multi-actor partnership (academia, farmers, technology SMEs, food industry and policy stakeholders) to develop novel interventions aimed at achieving a 20-90% reduction in crop losses due to fungal and mycotoxin contamination. MyToolBox will not only pursue a field-to-fork approach but will also consider safe use options of contaminated batches, such as the efficient production of biofuels. A major component of MyToolBox, which also distinguishes this proposal from previous efforts in the area mycotoxin reduction, is to provide the recommended measures to the end users along the food and feed chain in a web-based Toolbox. Cutting edge research will result in new interventions, which will be integrated together with existing measures in the Toolbox that will guide the end user as to the most effective measure(s) to be taken to reduce crop losses. We will focus on small grain cereals, maize, peanuts and dried figs, applicable to agricultural conditions in EU and China. Crop losses using existing practices will be compared with crop losses after novel pre-harvest interventions including investigation of genetic resistance to fungal infection, cultural control, the use of novel biopesticides (organic-farming compliant), competitive biocontrol treatment and development of forecasting models to predict mycotoxin contamination. Research into post-harvest measures including real-time monitoring during storage, innovative sorting of crops using vision-technology and novel milling technology will enable cereals with higher mycotoxin levels to be processed without breaching regulatory limits in finished products. Research into the effects of baking on mycotoxin levels will provide better understanding of process factors used in mycotoxin risk assessment. Involvement of leading institutions from China are aimed at establishing a sustainable cooperation in mycotoxin research between the EU and China.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: KBBE.2012.3.5-03 | Award Amount: 7.70M | Year: 2012

Water4Crops provides a combination of technical improvements in the field of bio-treatment and agricultural water use within a transdisciplinary identification of novel agri-business opportunities. Water4Crops aims at: a) developing innovative biotechnological wastewater treatments for improved water recycling, b) initiating the co-creation of alternative combinations of bio-treatment, recycling of high value elements, and combinations for bioproducts leading to a better commercialization of biotechnology and agricultural products in Europe and India, c)improving water use efficiency at field level through agronomics, plant breeding and locally adapted new irrigation technologies and accurate crop water requirement measurements techniques. Water4Crops will boost bio-based economy by applying a double track approach. First a comprehensive set of key Green-Economy technologies for: 1) valorization of volatile fatty acids; 2) obtaining: natural antioxidants (polyphenols), biopolymers (PHAs), energy (biomethane); 3) new substances for selective recovery of valuable products from wastewater; 4) tailoring effluent properties from decentralized innovative bioreactors; 5) low bio-sludge production by SBBG Reactors; 6) removal of organopollutants by nanobiocatalysts; 7) reduced clogging of wetlands; 8) virus monitoring detection assays; 9) suitable precision irrigation systems for reclaimed water; 10) new monitoring for increase crop water productivity; 11) understanding the genetic mechanisms regulating drought-adaptive traits across maize, sorghum, millet and tomato; 12) optimized waste water related combinations of species/genotypes x environment x management. Second, new product market combinations will be identified. The co-creation process will be organized by two Mirror cases (Emilia Romagna area in Italy and Hyderabad region in India) within a specific Science-Practice Interface (INNOVA platforms). Developing the new applications and business opportunities with regional enterprises and stakeholder will move India and Europe towards a Green Economy.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: KBBE.2012.1.2-04 | Award Amount: 8.49M | Year: 2013

The strategic goal of the project is to help the European vineyard sector facing the increasingly global competition by meeting: * Consumer demands for diversified high quality wines and concerns for food safety * Citizens requests for environment-friendly production systems involving decreased or no use of pesticides and spare of not renewable natural resources * Producers needs of plant material, tools and methods to help them cope with the negative impacts of climate change while responding to demands for quality, environmental friendliness and needs of profitability To reach this overall goal, the project will: * At the plant level, improve and design agricultural practices (canopy management, irrigation, fertilisation, training systems, pest and disease control, etc.) aimed at maximising berry quality, durable resistance to pests and and diseases, and adaptation to climate change (higher CO2, drought, UV light, and higher temperatures) * At the vineyard level, design, develop and test innovative agronomic systems integrating new agricultural practices and taking into account the variability of constraints met by European vineyards grown under a wide range of environments * At the breeding level, diversify grapevine varieties with regard to desirable adaptative traits building on tools and knowledge developed through international breeding and genomic initiatives. The project will combine short, medium, and long-term approaches to respectively conceive innovative viticulture systems, design and test novel agronomic practices and decision support systems, and exploit the genetic diversity of grapevine that all together will ensure a progress towards sustainable viticulture.

Discover hidden collaborations