Hong Kong, China

The Hong Kong University of Science and Technology is a public research university in Clear Water Bay Peninsula, Hong Kong. Established in 1991, it is one of the territory's youngest statutory universities.The University currently consists of four disciplinary schools, which offer degrees in Business, Engineering, Science and Social Science & Humanities, alongside Interdisciplinary Programs Office, which provides cross-disciplinary programs, and Fok Ying Tung Graduate School/Fok Ying Tung Research Institute, which aims at technology transfer and commercialization. HKUST has been continuously viewed as one of the top three higher education institutions in Hong Kong. Wikipedia.

Time filter

Source Type

Hong Kong University of Science, Technology and Hadasit Medical Research Services And Development Ltd. | Date: 2016-11-25

The present invention provides compositions and methods for treating, preventing, and inhibiting viral replication, viral infections and viral diseases and disorders, comprising the use of artemisinin derivatives having anti-viral activity.

Hong Kong University of Science and Technology | Date: 2016-08-19

The present subject matter is directed to water disinfection by pulsed electric field (PEF) systems. The present subject matter relates to a pulsed electric field assembly with a separator that separates and disinfects the microorganisms in drinking water. The present subject matter relates to an anti-corrosion electrode, particularly an electrode having a zeolite coating layer serving as a protector, a process for the preparation a zeolite coating on a conducting electrode substrate, and application of the zeolite coated electrode on water electrolysis and PEF systems.

City University of Hong Kong, Hong Kong University of Science and Technology | Date: 2015-08-26

Group aware command based arrangement is provided. An alignment command can be received, an undirected graph comprising a group of graph nodes connected by graph edges can be constructed, wherein the group of graph nodes represent a group of selected display elements, and the undirected graph can be partitioned as a function of identifying a severable graph edge of the graph edges that connects a pair of graph nodes included in the group of graph nodes to form a first collection of graph nodes and a second collection of graph nodes.

Hong Kong University of Science and Technology | Date: 2015-05-15

Techniques are provided for forming a gallium nitride flip-chip light-emitting diode. In an aspect, a device is provided that includes a gallium nitride layer, a passivation layer, a set of first conductive layers, and a second conductive layer. The gallium nitride layer is formed on a substrate that includes a first plurality of recesses associated with a first structure and a second plurality of recesses associated with a second structure, where the first plurality of recesses and the second plurality of recesses are associated with a first conductive material. The set of first conductive layers is formed on the passivation layer and corresponds to the first conductive material. The second conductive layer is formed on the passivation layer and corresponds to a second conductive material.

Lin Z.,Hong Kong University of Science and Technology
Accounts of Chemical Research | Year: 2010

Computational and theoretical chemistry provide fundamental insights into the structures, properties, and reactivities of molecules. As a result, theoretical calculations have become indispensable in various fields of chemical research and development. In this Account, we present our research in the area of computational transition metal chemistry, using examples to illustrate how theory impacts our understanding of experimental results and how close collaboration between theoreticians and experimental chemists can be mutually beneficial. We begin by examining the use of computational chemistry to elucidate the details of some unusual chemical bonds. We consider the three-center, two-electron bonding in titanocene σ-borane complexes and the five-center, four-electron bonding in a rhodium-bismuth complex. The bonding in metallabenzene complexes is also examined. In each case, theoretical calculations provide particular insight into the electronic structure of the chemical bonds. We then give an example of how theoretical calculations aided the structural determination of a κ2-N,N chelate ruthenium complex formed upon heating an intermediate benzonitrile-coordinated complex. An initial X-ray diffraction structure proposed on the basis of a reasonable mechanism appeared to fit well, with an apparently acceptable R value of 0.0478. But when DFT calculations were applied, the optimized geometry differed significantly from the experimental data. By combining experimental and theoretical outlooks, we posited a new structure. Remarkably, a re-refining of the X-ray diffraction data based on the new structure resulted in a slightly lower R value of 0.0453. We further examine the use of computational chemistry in providing new insight into C-H bond activation mechanisms and in understanding the reactivity properties of nucleophilic boryl ligands, addressing experimental difficulties with calculations and vice versa. Finally, we consider the impact of theoretical insights in three very specific experimental studies of chemical reactions, illustrating how theoretical results prompt further experimental studies: (i) diboration of aldehydes catalyzed by copper(I) boryl complexes, (ii) ruthenium-catalyzed C-H amination of arylazides, and (iii) zinc reduction of a vinylcarbyne complex. The concepts and examples presented here are intended for nonspecialists, particularly experimentalists. Together, they illustrate some of the achievements that are possible with a fruitful union of experiment and theory. © 2010 American Chemical Society.

Chow T.T.,Hong Kong University of Science and Technology
Applied Energy | Year: 2010

A significant amount of research and development work on the photovoltaic/thermal (PVT) technology has been done since the 1970s. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. A range of theoretical models has been introduced and their appropriateness validated by experimental data. Important design parameters are identified. Collaborations have been underway amongst institutions or countries, helping to sort out the suitable products and systems with the best marketing potential. This article gives a review of the trend of development of the technology, in particular the advancements in recent years and the future work required. © 2009 Elsevier Ltd.

Banfield D.K.,Hong Kong University of Science and Technology
Cold Spring Harbor Perspectives in Biology | Year: 2011

The protein composition of the Golgi is intimately linked to its structure and function. As the Golgi serves as the major protein-sorting hub for the secretory pathway, it faces the unique challenge of maintaining its protein composition in the face of constant influx and efflux of transient cargo proteins. Much of our understanding of how proteins are retained in the Golgi has come from studies on glycosylation enzymes, largely because of the compartment specific distributions these proteins display. From these and other studies of Golgi membrane proteins, we now understand that a variety of retention mechanisms are employed, the majority of which involve the dynamic process of iterative rounds of retrograde and anterograde transport. Such mechanisms rely on protein conformation and amino acid-based sorting signals as well as on properties of transmembrane domains and their relationship with the unique lipid composition of the Golgi. © 2011 Cold Spring Harbor Laboratory Press.

Herrup K.,Hong Kong University of Science and Technology
Nature Neuroscience | Year: 2015

Alzheimer's disease (AD) is a biologically complex neurodegenerative dementia. Nearly 20 years ago, with the combination of observations from biochemistry, neuropathology and genetics, a compelling hypothesis known as the amyloid cascade hypothesis was formulated. The core of this hypothesis is that it is pathological accumulations of amyloid-β, a peptide fragment of a membrane protein called amyloid precursor protein, that act as the root cause of AD and initiate its pathogenesis. Yet, with the passage of time, growing amounts of data have accumulated that are inconsistent with the basically linear structure of this hypothesis. And while there is fear in the field over the consequences of rejecting it outright, clinging to an inaccurate disease model is the option we should fear most. This Perspective explores the proposition that we are over-reliant on amyloid to define and diagnose AD and that the time has come to face our fears and reject the amyloid cascade hypothesis. © 2015 Nature America, Inc.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-17-2014 | Award Amount: 4.00M | Year: 2015

A European Digital Single Market free of barriers, including language barriers, is a stated EU objective to be achieved by 2020. The findings of the META-NET Language White Papers show that currently only 3 of the EU-27 languages enjoy moderate to good support by our machine translation technologies, with either weak (at best fragmentary) or no support for the vast majority of the EU-27 languages. This lack is a key obstacle impeding the free flow of people, information and trade in the European Digital Single Market. Many of the languages not supported by our current technologies show common traits: they are morphologically complex, with free and diverse word order. Often there are not enough training resources and/or processing tools. Together this results in drastic drops in translation quality. The combined challenges of linguistic phenomena and resource scenarios have created a large and under-explored grey area in the language technology map of European languages. Combining support from key stakeholders, QT21 addresses this grey area developing (1) substantially improved statistical and machine-learning based translation models for challenging languages and resource scenarios, (2) improved evaluation and continuous learning from mistakes, guided by a systematic analysis of quality barriers, informed by human translators, (3) all with a strong focus on scalability, to ensure that learning and decoding with these models is efficient and that reliance on data (annotated or not) is minimised. To continuously measure progress, and to provide a platform for sharing and collaboration (QT21 internally and beyond), the project revolves around a series of Shared Tasks, for maximum impact co-organised with WMT. To support early technology transfer, QT21 proposes a Technology Bridge linking ICT-17(a) and (b) projects and opening up the possibility of showing technical feasibility of early research outputs in near to operational environments.

Hong Kong University of Science and Technology | Date: 2016-03-07

The present teaching relates to analyzing user activities related to a video. The video is provided to a plurality of users. The plurality of users is monitored to detect one or more types of user activities performed in time with respect to different portions of the video. One or more visual representations of the monitored one or more types of user activities are generated. The one or more visual representations capture a level of attention paid by the plurality of users to the different portions of the video at any time instance. Interests of at least some of the plurality of users are determined with respect to the different portions of the video based on the one or more visual representations.

Loading Hong Kong University of Science and Technology collaborators
Loading Hong Kong University of Science and Technology collaborators