Bedford, MA, United States
Bedford, MA, United States

Hologic corporation is a developer, manufacturer and supplier of diagnostic and medical imaging systems related to women's health. It develops digital imaging technology for general radiography and mammography applications. Its core business units are focused on osteoporosis assessment, gynecologic health, mammography and breast biopsy, direct-to-digital x-ray for general radiography applications and mini C-arm imaging for orthopedic applications. Its major brands include Lorad, Fluoroscan, NovaSure, MyoSure, Selenia, Securview, Discovery, Multicare and Directray.Hologic is a leader in women's healthcare, particularly breast cancer diagnosis.Hologic is currently developing tomosynthesis technology for breast cancer diagnosis. Hologic first demonstrated the technology at the Radiological Society of North America in November 2003. It provided patient images and a prototype add-on to its Selenia digital mammography system. Clinical trials for Hologic's tomosynthesis technology began in the summer of 2004.Hologic was the recipient of Frost and Sullivan's 2004 Technology Leadership of the Year Award in women's healthcare. Wikipedia.


Time filter

Source Type

Patent
Hologic | Date: 2017-02-22

Disclosed is a tissue removal device. The device includes an outer tubular body, an inner tubular body and a cutting edge on the inner tubular body. The outer tubular body includes a window, which may be opened or closed by moving the cutting edge. The cutting edge has a hardness that exceeds the hardness of the material of the inner tube. The cutting edge may have a Rockwell C hardness of at least about 50, while the inner tube has a Rockwell C hardness of no more than about 40. The cutting edge may be formed by a milling step, and the inner tube may be formed by a drawing step. Tissue severed by the cutting edge may be removed at a rate of at least about 1.8 grams per minute through the inner tube, and the outer tubular body may have an outside diameter of no more than about 3.5 mm.


A system for analysis of biopsy samples includes a tissue sample transport mechanism linking a biopsy sample excision tool to a tissue sample holder disposed in a staging area of an analysis unit. The tissue sample is automatically transported from the excision tool to the specimen holder, where the tissue sample is analyzed in the staging area of the analysis unit. The transport mechanism may include tubing and a vacuum source. The tissue sample holder may be configured to slow or temporarily stop a tissue sample for individual analysis, or collect multiple tissue samples for analysis as a group. A tissue sample sorting mechanism may be employed that allows separation of specimens that can be correlated to the analysis.


A system for multi-mode breast imaging which comprises a compression arm assembly for compressing and immobilizing a breast for x-ray imaging, an x-ray tube assembly, and an x-ray image receptor is provided. The system is configured for a plurality of imaging protocols and modes.


Patent
Hologic | Date: 2017-01-25

A biopsy device for percutaneous tissue removal includes an elongated housing having an operational axis, a stylet hub slidably mounted in the housing, where the stylet hub is movable relative to the housing between a proximal, armed position, and a distal, fired position, the stylet hub having a stylet strike, a cannula hub slidably mounted in the housing alongside the stylet hub, and a spring-biased arming member. The cannula hub is movable relative to the housing between a proximal, armed position, and a distal, fired position. The arming member is moveably mounted to the housing proximal of the respective stylet and cannula hubs, and configured for manually-actuated movement from a relaxed, extended position to a loaded, compressed position to define a compressive arming stroke. The biopsy device also includes an arming member biasing spring that restores the arming member from the compressed position to the extended position.


A system for detecting lymphedema comprising a dual energy x-ray absorptiometry system and one or more spacer pads disposed within a field of view of the dual energy x-ray absorptiometry system. The dual energy x-ray absorptiometry system comprises an x-ray source and a patient support platform, wherein the patient support platform is configured to receive a patient in a supine position with the x-ray source disposed above the patient support platform. The one or more spacer pads are configured to be positioned between body parts of the patient.


Systems and methods are directed to computer-assisted navigation of images of a cytological specimen, including the acts of analyzing a first image of the cytological specimen to identify a plurality of objects of interest within the cytological specimen, displaying a plurality of images each comprising one of the plurality of identified objects of interest within the cytological specimen and including a second image of at least one object of interest, and displaying, responsive to receiving a user selection of the second image of the at least one object of interest, a field of view of the at least one object of interest and neighboring objects of interest, wherein the second image of the at least one object of interest has a first magnification, and wherein the field of view of the at least one object of interest is displayed at a second magnification different than the first magnification.


Patent
Hologic | Date: 2016-11-02

A breast imaging system leverages the combined strengths of two-dimensional and three-dimensional imaging to provide a breast cancer screening with improved sensitivity, specificity and patient dosing. A tomosynthesis system supports the acquisition of three-dimensional images at a dosage lower than that used to acquire a two-dimensional image. The low-dose three-dimensional image may be used for mass detection, while the two-dimensional image may be used for calcification detection. Obtaining tomosynthesis data at low dose provides a number of advantages in addition to mass detection including the reduction in scan time and wear and tear on the x-ray tube. Such an arrangement provides a breast cancer screening system with high sensitivity and specificity and reduced patient dosing.


In a tomosynthesis system a static focal spot is moved in a direction opposite to and generally synchronized with the directional movement of an x-ray source and X-ray collimator blades are moved during each exposure in synchronization with the shifting of the static focal spot. The synchronized movement of the static focal spot, x-ray tube and collimator blades helps keep the effective focal spot fixed in space relative to the breast, detector or both during the entire duration of the exposure and keeps the x-ray field on the detector and breast static. The shifting collimator blades follow an oscillating pattern over the multiple x-ray exposures of a tomosynthesis scan.


Patent
Hologic | Date: 2017-01-04

A biopsy system driver includes a motor having a rotatable output shaft, a support structure, a drive shaft, an elongate lead screw and a biopsy instrument drive member. The drive shaft is rotatably coupled to the support structure and includes or is otherwise operatively connected to the motor output shaft such that activation of the motor rotates the drive shaft. The elongate lead screw is coupled to the drive shaft such that rotation of the drive shaft rotates the lead screw about an axis of the lead screw. The lead screw is axially translatable relative to the drive shaft and to the support structure. The biopsy instrument drive member is threadably coupled to the lead screw such that rotation of the lead screw causes axial translation of one of the lead screw and biopsy instrument drive member relative to the other one and to the support structure.


A system for processing breast tissue images includes an image processing computer and a user interface operatively coupled to the image processing computer, wherein the image processing computer is configured to obtain image data of breast tissue, processing the image data to generate a set of reconstructed image slices, the reconstructed image slices collectively depicting the breast tissue, process respective subsets of the reconstructed image slices to generate a set of image slabs, each image slab comprising a synthesized 2D image of a portion of the breast tissue obtained from a respective subset of the set of reconstructed image slices.

Loading Hologic collaborators
Loading Hologic collaborators