Time filter

Source Type

Iowa City, IA, United States

Cullen J.J.,University of Iowa | Cullen J.J.,Holden Comprehensive Cancer Center
Autophagy | Year: 2010

Ascorbate (ascorbic acid, vitamin C) is one of the early, unorthodox treatments for cancer. The evidence upon which people base the use of ascorbate in cancer treatment falls into two categories: clinical data on dose concentration relationships, and laboratory data describing potential cell toxicity with high concentrations of ascorbate in vitro. Clinical data show that when ascorbate is given orally, fasting plasma concentrations are tightly controlled by decreased absorption, increased urine excretion, and reduced ascorbate bioavailability. In contrast, when ascorbate is administered intravenously, concentrations in the millimolar level are achieved. Thus, it is clear that intravenous administration of ascorbate can yield very high plasma levels, while oral treatment does not. © 2010 Landes Bioscience.

Shepherd T.R.,University of Iowa | Fuentes E.J.,University of Iowa | Fuentes E.J.,Holden Comprehensive Cancer Center
Methods in Enzymology | Year: 2011

Tiam-family guanine exchange proteins are activators of the Rho GTPase Rac1 and critical for cell morphology, adhesion, migration, and polarity. These modular proteins contain a variety of signaling domains, including a single postsynaptic density-95/discs large/zonula occludens-1 (PDZ) domain. Here, we show how structural and thermodynamic approaches applied to the Tiam1 PDZ domain can be used to gain unique insights into the affinity and specificity of PDZ-ligand interactions with peptides derived from Syndecan1 and Caspr4 proteins. First, we describe a fluorescence anisotropy-based assay that can be used to determine PDZ-ligand interactions, and describe important considerations in designing binding experiments. Second, we used site-specific mutagenesis in combination with double-mutant cycle analysis to probe the binding energetics and cooperativity of residues in two ligand binding pockets (S0 and S-2) that are involved in Tiam1 PDZ-ligand interactions. Peptide ligand binding results and double-mutant cycle analysis revealed that the S 0 pocket was important for Syndecan1 and Caspr4 peptide interactions and that the S-2 pocket provided selectivity for the Syndecan1 ligand. Finally, we devised a "peptide evolution" strategy whereby a Model consensus peptide was "evolved" into either the Syndecan1 or Caspr4 peptide by site-directed mutagenesis. These results corroborated the PDZ mutational analysis of the S0 pocket and identified the P -4 position in the ligand as critical for Syndecan1 affinity and selectivity. Together, these studies show that a combined structural and thermodynamic approach is powerful for obtaining insights into the origin of Tiam1 PDZ-ligand domain affinity and specificity. © 2011 Elsevier Inc.

Case A.J.,Holden Comprehensive Cancer Center | Madsen J.M.,Holden Comprehensive Cancer Center | Meyerholz D.K.,University of Iowa | Domann F.E.,Holden Comprehensive Cancer Center
Free Radical Biology and Medicine | Year: 2013

Heme synthesis partially occurs in the mitochondrial matrix; thus there is a high probability that enzymes and intermediates important in the production of heme will be exposed to metabolic by-products including reactive oxygen species. In addition, the need for ferrous iron for heme production, Fe/S coordination, and other processes occurring in the mitochondrial matrix suggests that aberrant fluxes of reactive oxygen species in this compartment might perturb normal iron homeostasis. Manganese superoxide dismutase (Sod2) is an antioxidant enzyme that governs steady-state levels of the superoxide in the mitochondrial matrix. Using hematopoietic stem cell-specific conditional Sod2 knockout mice we observed increased superoxide concentrations in red cell progeny, which caused significant pathologies including impaired erythrocytes and decreased ferrochelatase activity. Animals lacking Sod2 expression in erythroid precursors also displayed extramedullary hematopoiesis and systemic iron redistribution. Additionally, the increase in superoxide flux in erythroid precursors caused abnormal gene regulation of hematopoietic transcription factors, globins, and iron-response genes. Moreover, the erythroid precursors also displayed evidence of global changes in histone posttranslational modifications, a likely cause of at least some of the aberrant gene expression noted. From a therapeutic translational perspective, mitochondrially targeted superoxide-scavenging antioxidants partially rescued the observed phenotype. Taken together, our findings illuminate the superoxide sensitivity of normal iron homeostasis in erythrocyte precursors and suggest a probable link between mitochondrial redox metabolism and epigenetic control of nuclear gene regulation during mammalian erythropoiesis. © 2012 Elsevier Inc.

Du J.,University of Iowa | Liu J.,University of Iowa | Smith B.J.,Holden Comprehensive Cancer Center | Tsao M.S.,University of Toronto | And 3 more authors.
Cancer Gene Therapy | Year: 2011

K-ras mutations occur in as high as 95% of patients with pancreatic cancer. K-ras activates Rac1-dependent NADPH oxidase, a key source of superoxide. Superoxide has an important function in pancreatic cancer cell proliferation, and scavenging or decreasing the levels of superoxide inhibits pancreatic cancer cell growth both in vitro and in vivo. DNA microarray analysis and RT-PCR has demonstrated that Rac1 is also upregulated in pancreatic cancer. The aim of this study was to determine whether inhibiting Rac1 would alter pancreatic tumor cell behavior. Human pancreatic cancer cells with mutant K-ras (MIA PaCa-2), wild-type K-ras (BxPC-3) and the immortal H6c7 cell line (pancreatic ductal epithelium) expressing K-ras oncogene (H6c7eR-KrasT) that is tumorigenic, were infected with a dominant/negative Rac1 construct (AdN17Rac1). In cells with mutant K-ras, AdN17Rac1 decreased rac activity, decreased superoxide levels and inhibited in vitro growth. However, in the BxPC-3 cell line, AdN17Rac1 did not change rac activity, superoxide levels or in vitro cell growth. Additionally, AdN17Rac1 decreased superoxide levels and inhibited in vitro growth in the KrasT tumorigenic cell line, but had no effect in the immortalized H6c7 cell line. In human pancreatic tumor xenografts, intratumoral injections of AdN17Rac1 inhibited tumor growth. These results suggest that activation of Rac1-dependent superoxide generation leads to pancreatic cancer cell proliferation. In pancreatic cancer, inhibition of Rac1 may be a potential therapeutic target. © 2011 Nature America, Inc. All rights reserved.

Shepherd T.R.,University of Iowa | Klaus S.M.,University of Iowa | Liu X.,University of Iowa | Ramaswamy S.,University of Iowa | And 4 more authors.
Journal of Molecular Biology | Year: 2010

The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a "model" peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer. © 2010 Elsevier Ltd.

Discover hidden collaborations