Time filter

Source Type

Sasson S.C.,University of New South Wales | Sasson S.C.,HIV Immunopathology Research Laboratory | Zaunders J.J.,HIV Immunopathology Research Laboratory | Seddiki N.,University of New South Wales | And 13 more authors.
PLoS ONE | Year: 2012

Aim: HIV infection is associated with distortion of T-cell homeostasis and the IL-7/IL7R axis. Progressive infection results in loss of CD127+132- and gains in CD127-132+ CD4+ and CD8+ T-cells. We investigated the correlates of loss of CD127 from the T-cell surface to understand mechanisms underlying this homeostatic dysregulation. Methods: Peripheral and cord blood mononuclear cells (PBMCs; CBMC) from healthy volunteers and PBMC from patients with HIV infection were studied. CD127+132-, CD127+132+ and CD127-132+ T-cells were phenotyped by activation, differentiation, proliferation and survival markers. Cellular HIV-DNA content and signal-joint T-cell receptor excision circles (sjTRECs) were measured. Results: CD127+132- T-cells were enriched for naïve cells while CD127-132+ T-cells were enriched for activated/terminally differentiated T-cells in CD4+ and CD8+ subsets in health and HIV infection. HIV was associated with increased proportions of activated/terminally differentiated CD127-132+ T-cells. In contrast to CD127+132- T-cells, CD127-132+ T-cells were Ki-67+Bcl-2 low and contained increased levels of HIV-DNA. Naïve CD127+132- T-cells contained a higher proportion of sjTRECs. Conclusion: The loss of CD127 from the T-cell surface in HIV infection is driven by activation of CD127+132- recent thymic emigrants into CD127-132+ activated/terminally differentiated cells. This process likely results in an irreversible loss of CD127 and permanent distortion of T-cell homeostasis. © 2012 Sasson et al.

Discover hidden collaborations