Time filter

Source Type

Patent
Hitachi Kokusai Electrical Inc. | Date: 2016-06-20

A substrate processing apparatus includes a gas supply part configured to supply at least one of a film-forming gas, a first inert gas, and a second inert gas supplied at a temperature higher than that of the first inert gas into a process chamber in which a substrate is processed; and a control part configured to control the gas supply part to perform a film-forming process of supplying the film-forming gas and the first inert gas from the gas supply part into the process chamber to process the substrate, and to control a deposited film removing process of directly supplying the second inert gas having a temperature higher than that of the first inert gas from the gas supply part to the process chamber, in a state where there is no substrate in the process chamber, to remove a deposited film deposited within the process chamber.


Patent
Hitachi Kokusai Electrical Inc. | Date: 2016-09-09

A substrate processing apparatus includes a reaction tube processing a substrate, a heating part disposed on an outside of the reaction tube that heats the interior of the reaction tube, an insulating part disposed on an outside of the heating part, a plurality of flow channels installed in the insulating part and allows an air or a cooling medium to flow, and a ceiling part configured to cover an upper surface of the insulating part. The ceiling part includes a first member having a supply hole formed to communicate with the flow channels and to supply the air or cooling medium into the flow channels, and a second member having a space formed between the second member and the first member and allowing the air or the cooling medium to flow therein and having a partition part to partition the space into at least two spaces.


There is provided a method of manufacturing a semiconductor device, comprising forming a film on a substrate by performing a cycle a predetermined number of times, the cycle including non- simultaneously performing forming a first layer by supplying a precursor containing hydrogen and an halogen element to the substrate in a process chamber, under a condition in which the precursor is pyrolyzed if the precursor exists alone and under a condition in which a flow rate of the precursor supplied into the process chamber is larger than a flow rate of the precursor exhausted from an interior of the process chamber and forming a second layer by supplying a reactant to the substrate in the process chamber thereby modifying the first layer.


A method of manufacturing a semiconductor device includes: providing a substrate having an oxide film; performing, a predetermined number of times, a cycle of non-simultaneously performing supplying a precursor gas to the substrate, supplying a carbon-containing gas to the substrate, and supplying a nitrogen-containing gas to the substrate, or performing, a predetermined number of times, a cycle of non-simultaneously performing supplying a precursor gas to the substrate and supplying a gas containing carbon and nitrogen to the substrate, or performing, a predetermined number of times, a cycle of non-simultaneously performing supplying a precursor gas containing carbon to the substrate and supplying a nitrogen-containing gas to the substrate, the oxide film being used as an oxygen source to form a nitride layer containing oxygen and carbon as a seed layer; and forming a nitride film containing no oxygen and carbon as a first film on the seed layer.


Patent
Hitachi Kokusai Electrical Inc. | Date: 2016-09-08

A substrate processing apparatus includes: a processing chamber for processing a substrate; a substrate holding part whereon the substrate is placed; an elevating mechanism to move the substrate holding part vertically; a first gas supply system to supply a halogen-containing process gas to the substrate; a second gas supply system to supply an inert gas to the substrate; an exhaust unit to exhaust the process and inert gases; and a controller to control the elevating mechanism and the gas supply systems to: supply the process gas with a state where heights of the substrate holding part and exhaust unit are adjusted; and supply the inert gas to a center portion of the substrate from thereabove such that the inert gas flows radially from the center portion to a circumference of the substrate along a surface of the substrate and is exhausted out of the processing chamber through the exhaust unit.


Patent
Hitachi Kokusai Electrical Inc. | Date: 2016-09-13

A space needed to transfer a substrate container is decreased. A substrate processing apparatus includes a locating part where a substrate container accommodating a substrate is located; a driving unit configured to drive the locating part vertically; a transfer robot configured to transfer the substrate container; and a controller configured to control the driving unit and the transfer robot to move the locating part downward after the transfer robot moves to under the locating part to transfer the substrate container from the locating part to the transfer robot.


A method of manufacturing a semiconductor device includes forming a film on a substrate by performing a cycle a predetermined number of times. The cycle includes non-simultaneously performing: supplying a precursor containing a predetermined element to the substrate in a process chamber, removing the precursor from the process chamber, supplying a first reactant containing nitrogen, carbon and hydrogen to the substrate, removing the first reactant from the process chamber, supplying a second reactant containing oxygen to the substrate, and removing the second reactant from the process chamber. A time period of the act of removing the precursor is set to be longer than a time period of the act of removing the first reactant, or a time period of the act of removing the second reactant is set to be longer than the time period of the act of removing the first reactant.


Patent
Hitachi Kokusai Electrical Inc. | Date: 2016-09-26

Provided is a method of manufacturing a semiconductor device, including: forming a stacked metal nitride film including a first metal nitride film and a second metal nitride film on a substrate by alternately performing steps (a) and (b) a plurality of times, wherein the step (a) includes alternately supplying: a first metal source containing a first halogen element and a metal element; and a nitrogen-containing source to the substrate a plurality of times to form the first metal nitride film, and the step (b) includes alternately supplying: a second metal source containing a second halogen element different from the first halogen element and the metal element; and the nitrogen-containing source to the substrate a plurality of times to form the second metal nitride film.


Patent
Hitachi Kokusai Electrical Inc. | Date: 2016-09-22

A method of manufacturing a semiconductor device may include: (a) loading a substrate into a process chamber, the substrate having: a process surface provided with a first metal film containing at least a first metal element; (b) forming a second metal film on the substrate loaded in the process chamber by alternately supplying a metal compound and a first reactive gas reactive with the metal compound to the substrate a plurality of times; (c) alternately performing steps (c-1) and (c-2) a plurality of times wherein the step (c-1) includes: forming an amorphous third metal film on the second metal film, and the step (c-2) includes: forming a fourth metal film on the third metal film; and (d) forming an amorphous fifth metal film on the fourth metal film by supplying the metal compound mixed with the second reactive gas to the substrate.


A substrate processing apparatus includes a substrate heating part, a power supply part and a control device. The control device measures a temperature of the substrate while controlling the substrate heating part such that the temperature of the substrate reaches a first control temperature higher than the target temperature using power supplied by the power supply part. The device measures the temperature of the substrate for a second control temperature lower than the target temperature, and selects the power ratio value providing the best temperature uniformity in the plane of the substrate and a temperature average value for the selected power ratio value from a result of the measurement. The device calculates a control temperature and the power ratio value for the target temperature based on the selected temperature average value and the power ratio value for each of the first and second control temperature.

Loading Hitachi Kokusai Electrical Inc. collaborators
Loading Hitachi Kokusai Electrical Inc. collaborators