New Haven, CT, United States
New Haven, CT, United States
Time filter
Source Type

Interestingly, for prognosis, the significant biomarkers for Gefitinib-treated GBM patients (RTOG 0211) appeared to differ compared to historical, RT and non-Gefitinib-treated GBM patients. In Gefitinib-treated patients, those with higher levels of nuclear pAKT driven by PTEN loss, higher levels of nuclear pMAPK, and lower levels of nuclear pmTOR had significantly worse clinical outcomes. In contrast, in non-Gefitinib-treated patients, patients with PTEN-deficiency, and higher levels of EGFRvIII, total EGFR, IGFR1, NFkB and lower levels of nuclear Survivin appeared to have adverse clinical outcomes, highlighting the treatment-dependency of these biomarkers.

O'Shannessy D.J.,Morphotek Inc. | Somers E.B.,Morphotek Inc. | Chandrasekaran L.K.,Historx Inc. | Nicolaides N.C.,Morphotek Inc. | And 2 more authors.
Oncotarget | Year: 2014

Tumor survival is influenced by interactions between tumor cells and the stromal microenvironment. One example is Endosialin (Tumor Endothelial Marker-1 (TEM-1) or CD248), which is expressed primarily by cells of mesenchymal origin and some tumor cells. The expression, as a function of architectural masking, of TEM-1 and its pathway-associated proteins was quantified and examined for association with five-year disease-specific survival on a colorectal cancer (CRC) cohort divided into training (n=330) and validation (n=164) sets. Although stromal expression of TEM-1 had prognostic value, a more significant prognostic signature was obtained through linear combination of five compartment-specific expression scores (TEM-1 Stroma, TEM-1 Tumor Vessel, HIF2α Stromal Vessel, Collagen IV Tumor, and Fibronectin Stroma). This resulted in a single continuous risk score (TAPPS: TEM-1 Associated Pathway Prognostic Signature) which was significantly associated with decreased survival on both the training set [HR=1.76 (95%CI: 1.44-2.15); p<0.001] and validation set [HR=1.38 (95%CI: 1.02-1.88); p=0.04]. Importantly, since prognosis is a critical clinical question in Stage II patients, the TAPPS score also significantly predicted survival in the Stage II patient (n=126) cohort [HR=1.75 (95%CI: 1.22-2.52); p=0.002] suggesting the potential of using the TAPPS score to assess overall risk in CRC patients, and specifically in Stage II patients.

Dolled-Filhart M.,Historx Inc.
Methods in molecular biology (Clifton, N.J.) | Year: 2010

The analysis of protein expression in tissue by immunohistochemistry (IHC) presents three significant challenges. They are (1) the time-consuming nature of pathologist-based scoring of slides; (2) the need for objective quantification and localization of protein expression; and (3) the need for a highly reproducible measurement to limit intra- and inter-observer variability. While there are a variety of commercially available platforms for automated chromagen-based and fluorescence-based image acquisition of tissue microarrays, this chapter is focused on the analysis of fluorescent images by AQUA(R) analysis (Automated QUantitative Analysis) and the solutions offered by such a method for research and diagnostics. AQUA analysis is a method for molecularly defining regions of interest or "compartments" within a tissue section. The methodology can be utilized with tissue microarrays to provide rapid, quantitative, localized, and reproducible protein expression data that can then be used to identify statistically relevant correlations in populations. Ultimately this allows for a multiplexed, objective and standardized quantitative approach for biomarker research and diagnostic assay development for protein expression in tissue.

The present invention relates generally to improved methods of defining areas or compartments within which biomarker expression is detected and quantified. In particular, the present invention relates to automated methods for delineating marker-defined compartments objectively with minimal operator intervention or decision making. The method provides for precise definition of tissue, cellular or subcellular compartments particularly in histological tissue sections in which to quantitatively analyzing protein expression.

Historx Inc. | Date: 2013-04-22

Methods and apparatus for standardizing quantitative measurements from a microscope system. The process includes a calibration procedure whereby an image of a calibration slide is obtained through the optics of the microscope system. The calibration slide produces a standard response, which can be used to determine a machine intrinsic factor for the particular system. The machine intrinsic factor can be stored for later reference. In use, images are acquired of a target sample and of the excitation light source. The excitation light source sample is obtained using a calibration instrument configured to sample intensity. The calibration instrument has an associated correction factor to compensate its performance to a universally standardized calibration instrument. The machine intrinsic factor, sampled intensity, and calibration instrument correction factor are usable to compensate a quantitative measurement of the target sample in order to normalize the results for comparison with other microscope systems.

Yale University and Historx Inc. | Date: 2013-02-05

The method of the invention pertains to determining signal transduction activity in a tissue section by immunohistochemistry techniques. The expression level of the receptor of interest is determined as well as the expression levels of one or more effector molecules of the receptor signal transduction pathway. Furthermore a combined ratio of expression levels of effector molecules in subcellular compartments with the receptor expression was found to have prognostic significance.

Historx Inc. | Date: 2013-07-09

Glioblastoma multiforme (GBM) is an aggressive form of brain cancer. Biomarkers for GBM that provide prognostic and predictive information are useful because they provide the physician valuable information regarding treatment options for GBM. The present invention provides a method to quantify such biomarkers. Thus, the method relates to the quantification of GSK3, S6, CREB, PTEN, AKT and mTOR biomarkers and the use of AQUA analysis to estimate a patients risk and benefit to treatment using an inhibitor of the AGC-family kinase. Unlike traditional IHC, the AQUA system is objective and produces quantitative in situ protein expression data on a continuous scale. The present invention uses the AQUA system to provide a robust and standardized diagnostic assay that can be used in a clinical setting to provide prognostic and predictive information.

UTI Ltd Partnership and Historx Inc. | Date: 2011-12-02

Disclosed herein are methods of identifying suitable patients for postoperative radiotherapy based on the discovery that the quantification of ER, beyond simple positive/negative characterization, can provide valuable predictive information for the treatment of cancer, specifically breast cancer, and more particularly may predict a group more likely to respond to RT and spare patients from a potentially harmful treatment. Furthermore, the true quantification of ER expression provides a continuous recurrence risk assessment for patients being treated with tamoxifen, and therefore the standardization of the data across sites and imaging platforms significantly reduces the misclassification of patients when compared to the current standard by which ER expression is determined.

News Article | May 27, 2011

HistoRx has commercialized a technology originally developed at Yale Medical School used in the development of targeted drug therapies which are driving the evolution of personalized medicine. The Company’s new generation of predictive companion diagnostic tests can rapidly identify, validate and spatially map proteomic biomarkers in tissue samples, and translate these results into practical clinical applications for the treatment of breast cancer and other diseases.

Loading Historx Inc. collaborators
Loading Historx Inc. collaborators