Hirosaki, Japan
Hirosaki, Japan

Hirosaki University is a university in Hirosaki City in Aomori, Japan. Wikipedia.


Time filter

Source Type

Patent
KOHJIN LIFE science CO. and Hirosaki University | Date: 2015-03-09

[Problem] To provide a phospholipid -linolenic acid composition of consistent quality and having a stable supply of source material, with focus on Torula yeast, which is edible and recognized as safe, in order to resolve issues with omega 3 sources. [Means for Solving the Problem] As a result of intensive study to resolve the above-noted issues, the inventors of the present invention have discovered that a phospholipid -linolenic acid composition can be obtained using residue of yeast extract extracted from Torula yeast (Candida utilis), for example, which is currently produced in large quantities for application in foods, and so arrived at the present invention.


A purpose of the present invention is to provide a novel glucose derivative, which is taken into cells via a membrane sugar transport system and is represented by formula (1). Another purpose of the present invention is to provide an imaging agent and an imaging method for a cell or intracellular molecule using said glucose derivative. Yet another purpose of the present invention is to provide a method for detecting cancer cells with good accuracy using said glucose derivative and an imaging agent to be used in said method. The present invention provides D-glucose derivatives and L-glucose derivatives in which glucose is bound to the 7-position of a fluorescent molecular group with a coumarin backbone or a quinolone backbone. Also provided are a cell imaging agent and imaging method using the derivative. A cancer cell imaging agent and imaging method using the L-glucose derivative is also provided. G is a group selected from formulas (G1) - (G4) below.


Patent
System Instruments Co., Hirosaki University and Kobe University | Date: 2017-03-29

An automatic analyzing apparatus 10 includes a chip rack 11 that stores a pipette chip, a pipette 12 into which a specimen is injected, a conveyance unit that conveys the pipette 12 by parallel translation, a reagent rack 14, a reaction unit 15, a detection unit 16, and a detection block unit 17. The pipette chip stored by the chip rack 11 has a planar structure to directly and optically detect the specimen. The chip rack 11 includes, in a hole that receives the pipette chip, a guide corresponding to the structure of the pipette chip. The pipette 12 sucks or discharges the specimen via the pipette chip mounted onto the tip thereof by a drive of a pump. In the detection unit 16, a measurement is carried out with the pipette chip arranged so that the plane that receives light is vertical to an optical axis.


Patent
Unimatec Co. and Hirosaki University | Date: 2017-01-18

A resin - fluorine-containing boric acid composite particles composite material comprising a resin, and a condensate of boric acid and a fluorine-containing alcohol represented by the general formula R_(F)-A-OH (wherein R_(F) is a perfluoroalkyl group having 6 or less carbon atoms, or a polyfluoroalkyl group, in which some of the fluorine atom or atoms of the perfluoroalkyl group are replaced by a hydrogen atom or hydrogen atoms, and which contains a terminal perfluoroalkyl group having 6 or less carbon atoms and a perfluoroalkylene group having 6 or less carbon atoms; and A is an alkylene group having 1 to 6 carbon atoms, or comprising a resin, and a condensate of boric acid, the said fluorine-containing alcohol and an alkoxysilane at a molar ratio of 1.0 or less based on the fluorine-containing alcohol. These resin - fluorine-containing boric acid composite particles composite material has good adhesion to inorganic substrates, and the like.


Patent
Unimatec Co. and Hirosaki University | Date: 2017-01-18

The present invention provides fluorine-containing boric acid composite particles comprising a condensate of boric acid and a fluorine-containing alcohol represented by the general formula:R_(F)-A-OH[I]wherein R_(F) is a perfluoroalkyl group having 6 or less carbon atoms, or a polyfluoroalkyl group, in which some of the fluorine atoms of the perfluoroalkyl group are replaced by a hydrogen atom or atoms, and which contains a terminal perfluoroalkyl group having 6 or less carbon atoms and a perfluoroalkylene group having 6 or less carbon atoms; and A is an alkylene group having 1 to 6 carbon atoms. The fluorine-containing boric acid composite particles may also be a condensate of boric acid, the said fluorine-containing alcohol, and an alkoxysilane at a molar ratio of 1.0 or less based on the fluorine-containing alcohol. These fluorine-containing boric acid composite particles has excellent adhesion to inorganic substrates, and the like.


Patent
Unimatec Co. and Hirosaki University | Date: 2017-01-18

Fluorine-containing boric acid composite capsule particles comprising a condensate of a fluorine-containing alcohol, a guest compound, and boric acid particles, wherein the fluorine-containing alcohol is represented by the general formula:R_(F)-A-OHwherein R_(F) is:a perfluoroalkyl group having 6 or less carbon atoms,a linear or branched perfluoroalkyl group containing a terminal perfluoroalkyl group having 6 or less carbon atoms and a perfluoroalkylene group having 6 or less carbon atoms, and containing an O, S, or N atom, ora polyfluoroalkyl group in which some of the fluorine atom or atoms of the perfluoroalkyl group are replaced by hydrogen atom or atoms, and which contains a terminal perfluoroalkyl group having 6 or less carbon atoms and a perfluoroalkylene group having 6 or less carbon atoms, wherein the perfluoroalkylene group may contain an O, S, or N atom, and one fluorine atom of the terminal perfluoroalkyl group may be replaced by -(CH_(2))_(f)OH (wherein f is an integer of 1 to 3); andA is an alkylene group having 1 to 6 carbon atoms.


Patent
Unimatec Co. and Hirosaki University | Date: 2017-01-18

Fluorine-containing titanium oxide - nano-silica composite particles comprising a condensate of a fluorine-containing alcohol and an alkoxysilane, and titanium oxide and nano-silica particles, wherein the fluorine-containing alcohol is represented by the general formula:R_(F)-A-OH[I](wherein R_(F) is a perfluoroalkyl group having 6 or less carbon atoms, or a polyfluoroalkyl group, in which some of the fluorine atom or atoms of the perfluoroalkyl group are replaced by a hydrogen atom or atoms, and which contains a terminal perfluoroalkyl group having 6 or less carbon atoms and a perfluoroalkylene group having 6 or less carbon atoms; and A is an alkylene group having 1 to 6 carbon atoms). The fluorine-containing titanium oxide - nano-silica composite particles do not have difficulty in handling as with hydrogen fluoride, can be produced by using a fluorine-containing alcohol, which can be easily handled, and can produce a product capable of suppressing a decrease in the function of the titanium oxide as a photocatalyst even when subjected to a high-temperature heat treatment.


Provided is a glucose derivative, which is taken into cells via a membrane sugar transport system and is represented by formula (1). Also provided are an imaging agent and an imaging method for a cell or intracellular molecule using said glucose derivative. Further provided are a method for detecting cancer cells with good accuracy using said glucose derivative and an imaging agent to be used in said method. More specifically provided are D-glucose derivatives and L-glucose derivatives in which glucose is bound to the 7-position of a fluorescent molecular group with a coumarin backbone or a quinolone backbone. Also provided are a cell imaging agent and imaging method using the derivative. A cancer cell imaging agent and imaging method using the L-glucose derivative is also provided. G is a group selected from formulas (G1)-(G4) below.


Patent
Hirosaki University and Osaka University | Date: 2017-07-05

The present disclosure relates to: an artificial peritoneal tissue comprising a cellular tissue and a mesothelial cell layer that covers the surface of the cellular tissue, wherein the cellular tissue comprises a fibroblast, an extracellular matrix, and a vascular endothelial cell and/or a lymphatic endothelial cell each capable of forming a lumen; and a method for producing the artificial peritoneal tissue.


Patent
Hirosaki University | Date: 2017-08-02

The purpose of the present invention is to provide a novel cancer cell detection method that uses living body-derived cells and that can be used even in cytodiagnosis. In particular, the purpose of the present invention is to provide a novel cancer cell detection method that makes it possible to perform imaging of cells in a living state and a dual detection method for cancer cells in which the aforementioned method is combined with a pre-existing dyeing method for cytodiagnosis. Provided is a cancer cell detection method that uses living body-derived cells and that includes: incubating living cells included in a sample taken from a person together with a fluorescently-labeled L-glucose derivative and detecting the fluorescently-labeled L-glucose derivative that is taken up into the cells; and detecting fluorescence emitted by the L-glucose derivative that is present within the cells while the cells are attached to a thin glass or plastic plate. Also provided is a dual detection method for cancer cells in which the cancer cell detection method that uses living body-derived cells is combined with a dyeing method using cells that are fixed using an alcohol or the like.

Loading Hirosaki University collaborators
Loading Hirosaki University collaborators