Time filter

Source Type

Himeji, Japan

Himeji Dokkyo University is a private university in Himeji, Hyōgo, Japan. The predecessor of the school was founded in 1881, and it was chartered as a university in 1986.The first faculties were the Faculty of Foreign Languages, the Faculty of Law. In 1989, the faculty of Econo-informatics was founded, and in 2006 faculties of Medicine, Health and Physical Therapy were started.The Japanese foundation University Accreditation Association, according to a 2010 university evaluation and accreditation, has certified the university as being in conformity with Japanese university standards.On May 26, 2010, the decision was taken to stop accepting new student applications to the graduate law school, which was opened in April 2006. No students passed the entrance exam. Wikipedia.

Yamanaka R.,Himeji Dokkyo University | Nakamura K.,Kobe University | Murakami A.,Kobe University
AMB Express | Year: 2011

Effective utilization of photosynthetic microorganisms as potential biocatalysts is favorable for the production of useful biomaterials and the reduction of atmospheric CO2. For example, biocatalytic transformations are used in the synthesis of optically active alcohols. We previously found that ketone reduction in cells of the cyanobacterium Synechococcus PCC 7942 is highly enantioselective and remarkably enhanced under light illumination. In this study, the mechanism of lightenhanced ketone reduction was investigated in detail using several inhibitors of photosynthetic electron transport and of enzymes of the Calvin cycle. It is demonstrated that light intensity and photosynthesis inhibitors significantly affect the ketone reduction activity in Synechococcus. This indicates that the reduction correlates well with photosynthetic activity. Moreover, ketone reduction in Synechococcus specifically depends upon NADPH and not NADH. These results also suggest that cyanobacteria have the potential to be utilized as biocatalytic systems for direct usage of light energy in various applications such as syntheses of useful compounds and remediation of environmental pollutants. © 2011 Yamanaka et al; licensee Springer.

Miyamoto K.,Himeji Dokkyo University
Journal of Peptide Science | Year: 2012

Alpha-helical region substitution was applied to the SIAH1 and EL5 RING fingers. The Williams-Beuren syndrome transcription factor (WSTF) PHD_SIAH1 and WSTF PHD_EL5 RING fingers were created as the artificial ubiquitin-ligating enzyme (E3). These fingers possess E3 activities of mono-ubiquitination and poly-ubiquitination, respectively, with ubiquitin-conjugating enzyme (E2)-binding capabilities. Artificial E3s bind two zinc atoms and adopt a zinc-dependent ordered structure and ubiquitinate upon themselves without a substrate and a tag. Ubiquitination experiments using biotinylated ubiquitin showed that the WSTF PHD_EL5 RING finger is poly-ubiquitinated via residue Lys63 of ubiquitin. Substitution of alpha-helical region might be applicable to various RING fingers with mono-ubiquitination or poly-ubiquitination. © 2011 European Peptide Society and John Wiley & Sons, Ltd.

Takano M.,Kobe Gakuin University | Matsuyama S.,Himeji Dokkyo University
European Journal of Pharmacology | Year: 2014

Bradykinin is a vasoactive peptide that participates in numerous inflammatory processes, vasodilation, and cell growth/survival; it mainly acts through two receptor subtypes, bradykinin B1 and bradykinin B 2 receptors, which are G protein-coupled receptor (GPCR) family members. Details on ubiquitin-dependent degradation via the lysosome and/or proteasome, and the recycling process that directs bradykinin B2 receptor to the cell surface after agonist-induced endocytosis remain unclear; nevertheless, intracellular localization and internalization of GPCRs following stimulation by ligands are well known. Evidence concerning the nuclear localization and functions of GPCRs has been accumulating. The bradykinin B 2 receptor has been shown to localize in the nucleus and suggested to function as a transcriptional regulator of specific genes. The transfer of membrane GPCRs (regardless of liganding), including the bradykinin B2 receptor to the nucleus can be attributed to the presence of a peptide sequence referred to as the nuclear localization signal (NLS). More recently, we found that nuclear bradykinin B2 receptors form heterodimers with the nuclear lamina protein, lamin C. The function of heterodimerization of the bradykinin B2 receptor with lamin C is still unclear. However, nuclear proteins lamin A/C are involved in a variety of diseases. Although further studies are required to elucidate the precise functions and mechanisms of intracellular and nuclear bradykinin B2 receptors, here we discuss the role of lamin A/C in laminopathies and examine the clinical significance of the bradykinin B2 receptor heterodimer. © 2014 Elsevier B.V.

Miyamoto K.,Himeji Dokkyo University | Togiya K.,15 203 Hirano machi
PLoS ONE | Year: 2011

CC-chemokine receptor 5 (CCR5) is a specific co-receptor allowing the entry of human immunodeficiency virus type 1 (HIV-1). The LC4 region in CCR5 is required for HIV-1 entry into the cells. In this study, the solution structure of LC4 in SDS micelles was elucidated by using standard 1H two-dimensional NMR spectroscopy, circular dichroism, and fluorescdence quenching. The LC4 structure adopts two helical structures, whereas the C-terminal part remains unstructured. The positions in which LC4 binds to the HIV-1 inhibitory peptide LC5 were determined by docking calculations in addition to NMR data. The poses showed the importance of the hydrophobic interface of the assembled structures. The solution structure of LC4 elucidated in the present work provides a structural basis for further studies on the HIV-1 inhibitory function of the LC4 region. © 2011 Miyamoto, Togiya.

Ashihara T.,Shiga University of Medical Science | Haraguchi R.,Japan National Cardiovascular Center Research Institute | Nakazawa K.,Japan National Cardiovascular Center Research Institute | Namba T.,Himeji Dokkyo University | And 6 more authors.
Circulation Research | Year: 2012

Rationale: Electrogram-based catheter ablation, targeting complex fractionated atrial electrograms (CFAEs), is empirically known to be effective in halting persistent/permanent atrial fibrillation (AF). However, the mechanisms underlying CFAEs and electrogram-based ablation remain unclear. Objective: Because atrial fibrosis is associated with persistent/permanent AF, we hypothesized that electrotonic interactions between atrial myocytes and fibroblasts play an important role in CFAE genesis and electrogram-based catheter ablation. Methods and Results: We used a human atrial tissue model in heart failure and simulated propagation and spiral wave reentry with and without regionally proliferated fibroblasts. Coupling of fibroblasts to atrial myocytes resulted in shorter action potential duration, slower conduction velocity, and lower excitability. Consequently, heterogeneous fibroblast proliferation in the myocardial sheet resulted in frequent spiral wave breakups, and the bipolar electrograms recorded at the fibroblast proliferation area exhibited CFAEs. The simulations demonstrated that ablation targeting such fibroblast-derived CFAEs terminated AF, resulting from the ablation site transiently pinning the spiral wave and then pushing it out of the fibroblast proliferation area. CFAEs could not be attributed to collagen accumulation alone. Conclusions: Fibroblast proliferation in atria might be responsible for the genesis of CFAEs during persistent/permanent AF. Our findings could contribute to better understanding of the mechanisms underlying CFAE-targeted AF ablation. © 2012 American Heart Association, Inc.

Discover hidden collaborations