Higher Institute of Health ISS

Rome, Italy

Higher Institute of Health ISS

Rome, Italy
SEARCH FILTERS
Time filter
Source Type

De Nicola F.,Regina Elena Cancer Institute | Catena V.,Regina Elena Cancer Institute | Catena V.,University of L'Aquila | Rinaldo C.,CNR Institute of Molecular Biology and Pathology | And 11 more authors.
Cell Death and Disease | Year: 2014

Che-1/AATF is an RNA polymerase II-binding protein that is involved in the regulation of gene transcription, which undergoes stabilization and accumulation in response to DNA damage. We have previously demonstrated that following apoptotic induction, Che-1 protein levels are downregulated through its interaction with the E3 ligase HDM2, which leads to Che-1 degradation by ubiquitylation. This interaction is mediated by Pin1, which determines a phosphorylation-dependent conformational change. Here we demonstrate that HIPK2, a proapoptotic kinase, is involved in Che-1 degradation. HIPK2 interacts with Che-1 and, upon genotoxic stress, phosphorylates it at specific residues. This event strongly increases HDM2/Che-1 interaction and degradation of Che-1 protein via ubiquitin-dependent proteasomal system. In agreement with these findings, we found that HIPK2 depletion strongly decreases Che-1 ubiquitylation and degradation. Notably, Che-1 overexpression strongly counteracts HIPK2-induced apoptosis. Our results establish Che-1 as a new HIPK2 target and confirm its important role in the cellular response to DNA damage. © 2014 Macmillan Publishers Limited. All rights reserved.


Camerini S.,Higher Institute of Health ISS | Montepeloso E.,Central Laboratory of Rome | Casella M.,Higher Institute of Health ISS | Crescenzi M.,Higher Institute of Health ISS | And 2 more authors.
Food Chemistry | Year: 2016

Ricotta cheese is a typical Italian product, made with whey from various species, including cow, buffalo, sheep, and goat. Ricotta cheese nominally manufactured from the last three species may be fraudulently produced using the comparatively cheaper cow whey. Exposing such food frauds requires a reliable analytical method. Despite the extensive similarities shared by whey proteins of the four species, a mass spectrometry-based analytical method was developed that exploits three species-specific peptides derived from β-lactoglobulin and α-lactalbumin. This method can detect as little as 0.5% bovine whey in ricotta cheese from the other three species. Furthermore, a tight correlation was found (R2 > 0.99) between cow whey percentages and mass spectrometry measurements throughout the 1-50% range. Thus, this method can be used for forensic detection of ricotta cheese adulteration and, if properly validated, to provide quantitative evaluations. © 2015 Elsevier Ltd.

Loading Higher Institute of Health ISS collaborators
Loading Higher Institute of Health ISS collaborators