Time filter

Source Type

Toronto, Canada

Lee N.P.,HHT Solutions | Matevski D.,HHT Solutions | Dumitru D.,HHT Solutions | Piovesan B.,HHT Solutions | And 3 more authors.
Journal of Medical Genetics | Year: 2011

Background: Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder affecting the vascular system, characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. Mutations in two genes, ENG and ACVRL1, account for the majority of cases. Almost all cases of HHT show a family history of HHT-associated symptoms; few cases are de novo. Mutational mosaicism is the presence of two populations of cells, with both mutant and normal genotypes in one individual and generally occurs through de novo mutation events in embryogenesis. Some isolated cases of HHT with no detectable ENG or ACVRL1 mutation may be caused by a mosaic ENG or ACVRL1 mutation that is present at levels below the limit of detection of current molecular screening methods. Objective: To identify clinically relevant mosaicism in type I HHT. Methods: Sequencing, quantitative multiplex-PCR and marker analysis were used to identify three HHT families with founders who showed mosaicism for endoglin mutations. Where available, mosaicism was verified by testing different sampling sites, including blood, hair and buccal swabs. Results: All three mosaic samples exhibited the mutation in an estimated ≤25% of the DNA. Two of the mosaic patients had clinically confirmed HHT by the Curaçao criteria and the other showed symptoms of HHT. In each case the heterozygous mutation had already been identified in another family member before detection in the mosaic founder. Conclusions: The results show the importance of investigating patients without prior family history for the presence of mutational mosaicism, as detecting this would enable appropriate genetic screening and targeted medical care for at-risk children of mosaic patients. © 2011 by the BMJ Publishing Group Ltd. Source

Gallione C.,Duke University | Beis J.,Health Center | Berk T.,Mount Sinai Hospital | Bernhardt B.,University of Pennsylvania | And 25 more authors.
American Journal of Medical Genetics, Part A | Year: 2010

Juvenile polyposis (JP) and hereditary hemorrhagic telangiectasia (HHT) are clinically distinct diseases caused by mutations in SMAD4 and BMPR1A (for JP) and endoglin and ALK1 (for HHT). Recently, a combined syndrome of JP-HHT was described that is also caused by mutations in SMAD4. Although both JP and JP-HHT are caused by SMAD4 mutations, a possible genotype:phenotype correlation was noted as all of the SMAD4 mutations in the JP-HHT patients were clustered in the COOH-terminal MH2 domain of the protein. If valid, this correlation would provide a molecular explanation for the phenotypic differences, as well as a pre-symptomatic diagnostic test to distinguish patients at risk for the overlapping but different clinical features of the disorders. In this study, we collected 19 new JP-HHT patients from which we identified 15 additional SMAD4 mutations. We also reviewed the literature for other reports of JP patients with HHT symptoms with confirmed SMAD4 mutations. Our combined results show that although the SMAD4 mutations in JP-HHT patients do show a tendency to cluster in the MH2 domain, mutations in other parts of the gene also cause the combined syndrome. Thus, any mutation in SMAD4 can cause JP-HHT. Any JP patient with a SMAD4 mutation is, therefore, at risk for the visceral manifestations of HHT and any HHT patient with SMAD4 mutation is at risk for early onset gastrointestinal cancer. In conclusion, a patient who tests positive for any SMAD4 mutation must be considered at risk for the combined syndrome of JP-HHT and monitored accordingly. © 2010 Wiley-Liss, Inc. Source

Discover hidden collaborations