Entity

Time filter

Source Type


Hedrich U.B.S.,Hertie Institute for Clinical Brain Research | Diehl F.,University of Ulm | Stein W.,University of Ulm
Journal of Neurophysiology | Year: 2011

Neuronal release of modulatory substances provides motor pattern generating circuits with a high degree of flexibility. In vitro studies have characterized the actions of modulatory projection neurons in great detail in the stoma- togastric nervous system, a model system for neuromodulatory influ- ences on central pattern generators. Less is known about the activities and actions of modulatory neurons in fully functional and richly modulated network settings, i.e., in intact animals. It is also unknown whether their activities contribute to the motor patterns in different behavioral conditions. Here, we show for the first time the activity and effects of the well-characterized modulatory projection neuron 1 (MCN1) in vivo and compare them to in vitro conditions. MCN1 was always spontaneously active, typically in a rhythmic fashion with its firing being interrupted by ascending inhibitions from the pyloric motor circuit. Its activity contributed to pyloric motor activity, be- cause 1) the cycle period of the motor pattern correlated with MCN1 firing frequency and 2) stimulating MCN1 shortened the cycle period while 3) lesioning of the MCN1 axon reduced motor activity. In addition, gastric mill motor activity was elicited for the duration of the stimulation. Chemosensory stimulation of the antennae moved MCN1 away from baseline activity by increasing its firing frequency. Fol- lowing this increase, a gastric mill rhythm was elicited and the pyloric cycle period decreased. Lesioning the MCN1 axon prevented these effects. Thus modulatory projection neurons such as MCN1 can control the motor output in vivo, and they participate in the processing of exteroceptive sensory information in behaviorally relevant condi-tions. © 2011 the American Physiological Society. Source


Jucker M.,University of Tubingen | Jucker M.,German Center for Neurodegenerative Diseases | Jucker M.,Hertie Institute for Clinical Brain Research | Walker L.C.,Emory University
Annals of Neurology | Year: 2011

The misfolding and aggregation of specific proteins is a seminal occurrence in a remarkable variety of neurodegenerative disorders. In Alzheimer disease (the most prevalent cerebral proteopathy), the two principal aggregating proteins are b-amyloid (Ab) and tau. The abnormal assemblies formed by conformational variants of these proteins range in size from small oligomers to the characteristic lesions that are visible by optical microscopy, such as senile plaques and neurofibrillary tangles. Pathologic similarities with prion disease suggest that the formation and spread of these proteinaceous lesions might involve a common molecular mechanism-corruptive protein templating. Experimentally, cerebral b-amyloidosis can be exogenously induced by exposure to dilute brain extracts containing aggregated Aβ seeds. The amyloid-inducing agent probably is Aβ itself, in a conformation generated most effectively in the living brain. Once initiated, Aβ lesions proliferate within and among brain regions. The induction process is governed by the structural and biochemical nature of the Aβ seed, as well as the attributes of the host, reminiscent of pathogenically variant prion strains. The concept of prionlike induction and spreading of pathogenic proteins recently has been expanded to include aggregates of tau, a-synuclein, huntingtin, superoxide dismutase-1, and TDP-43, which characterize such human neurodegenerative disorders as frontotemporal lobar degeneration, Parkinson/Lewy body disease, Huntington disease, and amyotrophic lateral sclerosis. Our recent finding that the most effective Aβ seeds are small and soluble intensifies the search in bodily fluids for misfolded protein seeds that are upstream in the proteopathic cascade, and thus could serve as predictive diagnostics and the targets of early, mechanism-based interventions. Establishing the clinical implications of corruptive protein templating will require further mechanistic and epidemiologic investigations. However, the theory that many chronic neurodegenerative diseases can originate and progress via the seeded corruption of misfolded proteins has the potential to unify experimental and translational approaches to these increasingly prevalent disorders. © 2011 American Neurological Association. Source


Phukan J.,University College London | Albanese A.,Catholic University of the Sacred Heart | Gasser T.,Hertie Institute for Clinical Brain Research | Warner T.,University College London
The Lancet Neurology | Year: 2011

The dystonias are a heterogeneous group of hyperkinetic movement disorders characterised by involuntary sustained muscle contractions that lead to abnormal postures and repetitive movements. Dystonia syndromes represent common movement disorders and yet are often misdiagnosed or unrecognised. In recent years, there have been substantial advances in the understanding of the spectrum of clinical features that encompass dystonia syndromes, from severe generalised childhood dystonia that is often genetic in origin, to adult-onset focal dystonias and rarer forms of secondary dystonias, to dystonia as a feature of other types of CNS dysfunction. There has also been a rationalisation of the classification of dystonia and a greater understanding of the causes of dystonic movements from the study of genetics, neurophysiology, and functional imaging in the most prevalent form of dystonia syndrome, primary dystonia. © 2011 Elsevier Ltd. Source


Adamopoulou E.,Hertie Institute for Clinical Brain Research | Naumann U.,University of Tubingen
OncoImmunology | Year: 2013

Natural killer (NK) cells are integral components of the antitumor immune response. The downregulation of ligands for NK-cell stimulatory receptors represents a strategy whereby glioblastoma cells can evade NK-cell attacks. Histone deacetylase inhibitors can stimulate the (re)expression of these ligands, driving cytotoxic responses against glioblastoma cells that efficiently inhibit tumor growth © 2013 Landes Bioscience. Source


Marzesco A.-M.,Hertie Institute for Clinical Brain Research
Advances in Experimental Medicine and Biology | Year: 2013

The stem cell antigen prominin-1 (CD133) is associated with two major types (small and large) of extracellular membrane vesicles in addition to its selective concentration in various kinds of plasma membrane protrusion. During development of the mammalian central nervous system, differentiating neuroepithelial stem cells release these vesicles into the embryonic cerebrospinal fluid. In glioblastoma patients, an increase of such vesicles, particularly the smaller ones, have been also observed in cerebrospinal fluid. Similarly, hematopoietic stem and progenitor cells release small ones concomitantly with their differentiation. Although the functional significance of these prominin-1-containing membrane vesicles is poorly understood, a link between differentiation of stem (and cancer stem) cells and their release is emerging. In this chapter, I will summarize our knowledge about prominin-1-containing membrane vesicles including a potential role in cell-cell communication and highlight their prospective value as a new biomarker for tumorigenesis diagnostics. © 2013 Springer Science+Business Media New York. Source

Discover hidden collaborations