Hermitage Research Station

Warwick, Australia

Hermitage Research Station

Warwick, Australia

Time filter

Source Type

Shahinnia F.,Leibniz Institute of Plant Genetics and Crop Plant Research | Shahinnia F.,Iran National Institute of Genetic Engineering and Biotechnology | Druka A.,James Hutton Institute | Franckowiak J.,Hermitage Research Station | And 3 more authors.
Theoretical and Applied Genetics | Year: 2012

Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC 7F 3 nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by highresolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus. © Springer-Verlag 2011.


Lu S.,U.S. Department of Agriculture | Platz G.J.,Hermitage Research Station | Edwards M.C.,U.S. Department of Agriculture | Friesen T.L.,U.S. Department of Agriculture
Phytopathology | Year: 2010

Fourteen single nucleotide polymorphisms (SNPs) were identified at the mating type (MAT) loci of Pyrenophora teres f. teres (Ptt), which causes net form (NF) net blotch, and P. teres f. maculata (Ptm), which causes spot form (SF) net blotch of barley. MAT-specific SNP primers were developed for polymerase chain reaction (PCR) and the two forms were differentiated by distinct PCR products: PttMAT1-1 (1,143 bp) and PttMAT1-2 (1,421 bp) for NF MAT1-1 and MAT1-2 isolates; PtmMAT1-1 (194 bp) and PtmMAT1-2 (939 bp) for SF MAT1-1 and MAT1-2 isolates, respectively. Specificity was validated using 37 NF and 17 SF isolates collected from different geographic regions. Both MAT1-1 and MAT1-2 SNP primers retained respective specificity when used in duplex PCR. No cross-reactions were observed with DNA from P. graminea, P. triticirepentis, or other ascomycetes, or barley. Single or mixed infections of the two different forms were also differentiated. This study provides the first evidence that the limited SNPs at the MAT locus are sufficient for distinguishing closely related heterothallic ascomycetes at subspecies levels, thus allowing pathogenicity and mating type characteristics of the fungus to be determined simultaneously. Methods presented will facilitate pathogen detection, disease management, and epidemiological studies.


Druka A.,Scottish Crop Research Institute | Franckowiak J.,Hermitage Research Station | Lundqvist U.,Nordic Genetic Resource Center | Bonar N.,Scottish Crop Research Institute | And 8 more authors.
Plant Physiology | Year: 2011

Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and wellcharacterized collections of morphological and developmental mutants have been assembled that represent a valuable resource for exploring a wide range of complex and fundamental biological processes. We constructed a collection of 881 backcrossed lines containing mutant alleles that induce a majority of the morphological and developmental variation described in this species. After genotyping these lines with up to 3,072 single nucleotide polymorphisms, comparison to their recurrent parent defined the genetic location of 426 mutant alleles to chromosomal segments, each representing on average <3% of the barley genetic map. We show how the gene content in these segments can be predicted through conservation of synteny with model cereal genomes, providing a route to rapid gene identification. © 2010 American Society of Plant Biologists.


Chauhan Y.S.,Fisheries and Forestry DAFF | Solomon K.F.,Hermitage Research Station | Rodriguez D.,University of Queensland
Field Crops Research | Year: 2013

Recurring water stresses are a major risk factor for rainfed maize cropping across the highly diverse agro-ecological environments of Queensland (Qld) and northern New South Wales (NNSW). Enhanced understanding of such agro-ecological diversity is necessary to more consistently sample target production environments for testing and targeting release of improved germplasm, and to improve the efficiency of the maize pre-breeding and breeding programs of Qld and New South Wales. Here, we used the Agricultural Production Systems Simulator (APSIM) - a well validated maize crop model to characterize the key distinctive water stress patterns and risk to production across the main maize growing regions of Qld and NNSW located between 15.8° and 31.5°S, and 144.5° and 151.8°E. APSIM was configured to simulate daily water supply demand ratios (SDRs) around anthesis as an indicator of the degree of water stress, and the final grain yield. Simulations were performed using daily climatic records during the period between 1890 and 2010 for 32 sites-soils in the target production regions. The runs were made assuming adequate nitrogen supply for mid-season maize hybrid Pioneer 3153. Hierarchical complete linkage analyses of the simulated yield resulted in five major clusters showing distinct probability distribution of the expected yields and geographic patterns. The drought stress patterns and their frequencies using SDRs were quantified using multivariate statistical methods. The identified stress patterns included no stress, mid-season (flowering) stress, and three terminal stresses differing in terms of severity. The combined frequency of flowering and terminal stresses was highest (82.9%), mainly in sites-soils combinations in the west of Qld and NNSW. Yield variability across the different sites-soils was significantly related to the variability in frequencies of water stresses. Frequencies of water stresses within each yield cluster tended to be similar, but different across clusters. Sites-soils falling within each yield cluster therefore could be treated as distinct maize production environments for testing and targeting newly developed maize cultivars and hybrids for adaptation to water stress patterns most common to those environments. © 2013.


Yu G.T.,North Dakota State University | Horsley R.D.,North Dakota State University | Zhang B.,Zhejiang University | Franckowiak J.D.,Hermitage Research Station
Theoretical and Applied Genetics | Year: 2010

Semi-dwarfing genes have been widely used in spring barley (Hordeum vulgare L.) breeding programs in many parts of the world, but the success in developing barley cultivars with semi-dwarfing genes has been limited in North America. Exploiting new semi-dwarfing genes may help in solving this dilemma. A recombinant inbred line population was developed by crossing ZAU 7, a semi-dwarf cultivar from China, to ND16092, a tall breeding line from North Dakota. To identify quantitative trait loci (QTL) controlling plant height, a linkage map comprised of 111 molecular markers was constructed. Simple interval mapping was performed for each of the eight environments. A consistent QTL for plant height was found on chromosome 7HL. This QTL is not associated with maturity and rachis internode length. We suggest the provisional name Qph-7H for this QTL. Qph-7H from ZAU 7 reduced plant height to about 3/4 of normal; thus, Qph-7H is considered a semi-dwarfing gene. Other QTLs for plant height were found, but their expression was variable across the eight environments tested. © Springer-Verlag 2010.


Solomon K.F.,Hermitage Research Station | Martin I.,Kairi Research Station | Zeppa A.,Hermitage Research Station
Euphytica | Year: 2010

In order to investigate the effect of long term recurrent selection on the pattern of gene diversity, thirty randomly-selected individuals from the progenitors (p) and four selection cycles (C0, C3, C6 and C11) were sampled for DNA analysis from the tropical maize (Zea mays L.) breeding populations, Atherton 1 (AT1) and Atherton 2 (AT2). Fifteen polymorphic Simple Sequence Repeat markers amplified a total of 284 and 257 alleles in AT1 and AT2 populations, respectively. Reductions in the number of alleles were observed at advanced selection cycles. About 11 and 12% of the alleles in AT1 and AT2 populations respectively, were near to fixation. However, a higher number of alleles (37% in AT1 and 33% in AT2) were close to extinction. Fisher's exact test and analysis of molecular variance (AMOVA) showed significant population differentiations. Gene diversity estimates and AMOVA revealed increased genetic differentiations at the expense of loss of heterozygosity. Population differentiations were mainly due to fixation of complementary alleles at a locus in the two breeding populations. The estimates of effective population at an advanced selection cycle were close to the population size predicted by the breeding method. © 2010 Springer Science+Business Media B.V.


Jordan D.R.,University of Queensland | Hunt C.H.,Agri Science Queensland | Cruickshank A.W.,Hermitage Research Station | Borrell A.K.,University of Queensland | Henzell R.G.,Hermitage Research Station
Crop Science | Year: 2012

The stay-green drought adaptation mechanism has been widely promoted as a way of improving grain yield and lodging resistance in sorghum [Sorghum bicolor (L.) Moench] and as a result has been the subject of many physiological and genetic studies. The relevance of these studies to elite sorghum hybrids is not clear given that they sample a limited number of environments and were conducted using inbred lines or relatively small numbers of experimental F 1 hybrids. In this study we investigated the relationship between stay-green and yield using data from breeding trials that sampled 1668 unique hybrid combinations and 23 environments whose mean yields varied from 2.3 to 10.5 t ha -1. The strength and direction of the association between stay-green and grain yield varied with both environment and genetic background (male tester). The majority of associations were positive, particularly in environments with yields below 6 t ha -1. As trial mean yield increased above 6 t ha -1 there was a trend toward an increased number of negative associations; however, the number and magnitude of the positive associations were larger. Given that post-flowering drought is very commonly experienced by sorghum crops world wide and average yields are 1.2 and 2.5 t ha -1 for the world and Australia, respectively, our results indicate that selection for staygreen in elite sorghum hybrids may be broadly beneficial for increasing yield in a wide range of environments. © Crop Science Society of America.


A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies. © 2011 Her Majesty the Queen in Rights of Australia as represented by The State of Queensland.


Mace E.S.,Hermitage Research Station | Jordan D.R.,Hermitage Research Station
Theoretical and Applied Genetics | Year: 2010

Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access. © 2010 Springer-Verlag.


Mace E.S.,Hermitage Research Station | Hunt C.H.,Hermitage Research Station | Jordan D.R.,University of Queensland
Theoretical and Applied Genetics | Year: 2013

Nested association mapping (NAM) offers power to dissect complex, quantitative traits. This study made use of a recently developed sorghum backcross (BC)-NAM population to dissect the genetic architecture of flowering time in sorghum; to compare the QTL identified with other genomic regions identified in previous sorghum and maize flowering time studies and to highlight the implications of our findings for plant breeding. A subset of the sorghum BC-NAM population consisting of over 1,300 individuals from 24 families was evaluated for flowering time across multiple environments. Two QTL analysis methodologies were used to identify 40 QTLs with predominately small, additive effects on flowering time; 24 of these co-located with previously identified QTL for flowering time in sorghum and 16 were novel in sorghum. Significant synteny was also detected with the QTL for flowering time detected in a comparable NAM resource recently developed for maize (Zea mays) by Buckler et al. (Science 325:714-718, 2009). The use of the sorghum BC-NAM population allowed us to catalogue allelic variants at a maximal number of QTL and understand their contribution to the flowering time phenotype and distribution across diverse germplasm. The successful demonstration of the power of the sorghum BC-NAM population is exemplified not only by correspondence of QTL previously identified in sorghum, but also by correspondence of QTL in different taxa, specifically maize in this case. The unification across taxa of the candidate genes influencing complex traits, such as flowering time can further facilitate the detailed dissection of the genetic control and causal genes. © 2013 Her Majesty the Queen in Right of Australia.

Loading Hermitage Research Station collaborators
Loading Hermitage Research Station collaborators