Henan Anti cancer Hospital

Zhengzhou, China

Henan Anti cancer Hospital

Zhengzhou, China
SEARCH FILTERS
Time filter
Source Type

Liu S.,Texas A&M University | Liu S.,Zhengzhou University | Li C.,Henan Anti cancer Hospital | Xing Y.,Zhengzhou University | And 2 more authors.
Current Neuropharmacology | Year: 2016

Neuromodulation, including invasive and non-invasive stimulation, has been used to treat intractable chronic pain. However, the mechanisms by which neuromodulation produces antinociceptive effect still remain uncertain. Optogenetic manipulation, a recently developed novel approach, has already proven its value to clinicians by providing new insights into mechanisms of current clinical neuromodulation methods as well as pathophysiology of nervous system diseases at the circuit level. Here, we discuss the principles of two neuromodulation methods (deep brain stimulation and motor cortex stimulation) and their applications in pain treatment. More important, we summarize the new information from recent studies regarding optogenetic manipulation in neuroscience research and its potential utility in pain study. © 2016 Bentham Science Publishers.


Liu S.,Zhengzhou University | Liu S.,Johns Hopkins University | Jia X.,Johns Hopkins University | Li C.,Johns Hopkins University | And 4 more authors.
PLoS ONE | Year: 2013

Previous studies have shown that chemotactic factor stromal-cell derived factor 1α (SDF1α) promotes cell recovery from hypoxic injury via its main receptor C-X-C chemokine receptor type (CXCR) 4. However, the role of its new receptor CXCR7 on cell repair against hypoxia and cell response to SDF1α remains largely unknown. In this study, neurons induced from hippocampal progenitor cells were pre-conditioned in hypoxia for 4h and subsequently monitored to investigate the function of SDF1α on cell repair after hypoxia. Neurons were assessed for their cell morphology, actin filament polymerization and migration capability. SDF1α protein levels increased significantly 1 h after hypoxia compared to control (P<0.01), and it reached a peak at 24 h after hypoxia. Moreover, addition of SDF1α promoted neurite outgrowth and actin filament polymerization both in normoxic and hypoxic cells compared to untreated cells. Cell migration showed a time-dependent increase with SDF1α stimulation in both groups, and hypoxic cells illustrated a significant augment at 0.5 h, 1 h and 12 h after SDF1α application compared to normoxic cells (P<0.01). CXCR7 expression also increased with time dependence after hypoxia and demonstrated a two-fold upregulation compared to control at 24 h after hypoxia. With CXCR7 silencing, axon elongation and actin filament polymerization induced by SDF1α were inhibited sharply both in normoxic and hypoxic cells. CXCR7 silencing also leads to reduced hypoxic cell migration at 0.5 h, 1 h, 12 h, 24 h and 36 h after SDF1α application (P<0.01), but it failed to reduce normoxic cell migration induced by SDF1α at 0.5 h, 1 h and 12 h (P>0.05). 24 h SDF1α stimulation led to higher ERK1/2 phosphorylation compared to control, and ERK1/2 phosphorylation increased more in hypoxic cells than that in normoxic cells. This study suggested that CXCR7 plays an important role on cell repair processing induced by SDF1α, and CXCR7 silencing attenuates cell adaptive response to acute SDF1α stimulation (≤12 h) after hypoxia. © 2013 Liu et al.

Loading Henan Anti cancer Hospital collaborators
Loading Henan Anti cancer Hospital collaborators