Entity

Time filter

Source Type


Delcourt M.,Montpellier University Hospital Center | Riant F.,French Institute of Health and Medical Research | Mancini J.,Marseille University Hospital Center | Milh M.,Marseille University Hospital Center | And 21 more authors.
Journal of Neurology, Neurosurgery and Psychiatry | Year: 2014

Background Heterozygous dominant mutations of PRRT2 have been associated with various types of paroxysmal neurological manifestations, including benign familial infantile convulsions and paroxysmal kinesigenic dyskinesia. The phenotype associated with biallelic mutations is not well understood as few cases have been reported. Methods PRRT2 screening was performed by Sanger sequencing and quantitative multiplex PCR of short fluorescent fragments. A CGH array was used to characterise the size of the deletion at the 16p11.2 locus. Results Five patients with homozygous or compound heterozygous deleterious PRRT2 gene mutations are described. These patients differ from those with a single mutation by their overall increased severity: (1) the combination of at least three different forms of paroxysmal neurological disorders within the same patient and persistence of paroxysmal attacks; (2) the occurrence of uncommon prolonged episodes of ataxia; and (3) the association of permanent neurological disorders including learning difficulties in four patients and cerebellar atrophy in 2. Conclusions Our observations expand the phenotype related to PRRT2 insufficiency, and highlight the complexity of the phenotype associated with biallelic mutations, which represents a severe neurological disease with various paroxysmal disorders and frequent developmental disabilities. © 2015 by the BMJ Publishing Group Ltd. Source


Delcourt M.,Montpellier University Hospital Center | Riant F.,Laboratoire Of Genetique | Riant F.,French Institute of Health and Medical Research | Mancini J.,Marseille University Hospital Center | And 22 more authors.
Journal of Neurology, Neurosurgery and Psychiatry | Year: 2015

Background: Heterozygous dominant mutations of PRRT2 have been associated with various types of paroxysmal neurological manifestations, including benign familial infantile convulsions and paroxysmal kinesigenic dyskinesia. The phenotype associated with biallelic mutations is not well understood as few cases have been reported. Methods: PRRT2 screening was performed by Sanger sequencing and quantitative multiplex PCR of short fluorescent fragments. A CGH array was used to characterise the size of the deletion at the 16p11.2 locus. Results: Five patients with homozygous or compound heterozygous deleterious PRRT2 gene mutations are described. These patients differ from those with a single mutation by their overall increased severity: (1) the combination of at least three different forms of paroxysmal neurological disorders within the same patient and persistence of paroxysmal attacks; (2) the occurrence of uncommon prolonged episodes of ataxia; and (3) the association of permanent neurological disorders including learning difficulties in four patients and cerebellar atrophy in 2. Conclusions: Our observations expand the phenotype related to PRRT2 insufficiency, and highlight the complexity of the phenotype associated with biallelic mutations, which represents a severe neurological disease with various paroxysmal disorders and frequent developmental disabilities. Source


Quentin S.,Hematology Laboratory Assistance Publique Hopitaux Of Paris | Quentin S.,French Institute of Health and Medical Research | Quentin S.,University Paris Diderot | Cuccuini W.,Hematology Laboratory Assistance Publique Hopitaux Of Paris | And 35 more authors.
Blood | Year: 2011

Fanconi anemia (FA) is a genetic condition associated with bone marrow (BM) failure, myelodysplasia (MDS), and acute myeloid leukemia (AML). We studied 57 FA patients with hypoplastic or aplastic anemia (n = 20), MDS (n = 18), AML (n = 11), or no BM abnormality (n = 8). BM samples were analyzed by karyotype, high-density DNA arrays with respect to paired fibroblasts, and by selected oncogene sequencing. A specific pattern of chromosomal abnormalities was found in MDS/AML, which included 1q+ (44.8%), 3q+ (41.4%),-7/7q (17.2%), and 11q-(13.8%). Moreover, cryptic RUNX1/AML1 lesions (translocations, deletions, or mutations) were observed for the first time in FA (20.7%). Rare mutations of NRAS, FLT3-ITD, MLL-PTD, ERG amplification, and ZFP36L2-PRDM16 translocation, but no TP53, TET2, CBL, NPM1, and CEBPα mutations were found. Frequent homozygosity regions were related not to somatic copy-neutral loss of heterozygosity but to consanguinity, suggesting that homologous recombination is not a common progression mechanism in FA. Importantly, the RUNX1 and other chromosomal/genomic lesions were found at the MDS/AML stages, except for 1q+, which was found at all stages. These data have implications for staging and therapeutic managing in FA patients, and also to analyze the mechanisms of clonal evolution and oncogenesis in a background of genomic instability and BM failure. © 2011 by The American Society of Hematology. Source

Discover hidden collaborations