Tiffin, OH, United States
Tiffin, OH, United States

Time filter

Source Type

News Article | May 9, 2017
Site: www.prweb.com

LearnHowToBecome.org, a leading resource provider for higher education and career information, has released its list of the best colleges and universities in Ohio for 2017. 50 four-year schools were ranked, with Ursuline College, Xavier University, Ohio Northern University, Case Western Reserve University and John Carroll University coming in as the top five. Of the 29 two-year schools that also made the cut, Cincinnati State Technical and Community College, Belmont College, Sinclair College, Owens Community College and Columbus State Community College were in the top five. A complete list of schools is included below. “Earning a certificate or degree can be a major stepping stone for career development,” said Wes Ricketts, senior vice president of LearnHowToBecome.org. “These schools offer more than just educational opportunities, they represent Ohio’s best combination of education and employment resources that translate to strong post-college earnings for students.” To be included on the “Best Colleges in Ohio” list, institutions must be regionally accredited, not-for-profit schools. Each college is also ranked on metrics like the variety of degree programs offered, the number of employment and academic resources offered, financial aid availability, graduation rates and annual alumni earnings 10 years after entering college. Complete details on each college, their individual scores and the data and methodology used to determine the LearnHowToBecome.org “Best Colleges in Ohio” list, visit: http://www.learnhowtobecome.org/college/ohio/ Ohio’s Best Four-Year Colleges for 2017 include: Ashland University Baldwin Wallace University Bluffton University Bowling Green State University-Main Campus Capital University Case Western Reserve University Cedarville University Cleveland Institute of Art Cleveland State University Defiance College Denison University Franciscan University of Steubenville Franklin University Heidelberg University Hiram College John Carroll University Kent State University at Kent Kenyon College Lake Erie College Lourdes University Malone University Marietta College Miami University-Oxford Mount Saint Joseph University Mount Vernon Nazarene University Muskingum University Notre Dame College Oberlin College Ohio Dominican University Ohio Northern University Ohio State University-Main Campus Ohio State University-Mansfield Campus Ohio University-Main Campus Ohio Wesleyan University Otterbein University The College of Wooster The University of Findlay Union Institute & University University of Akron Main Campus University of Cincinnati-Main Campus University of Dayton University of Mount Union University of Toledo Ursuline College Walsh University Wilberforce University Wittenberg University Wright State University-Main Campus Xavier University Youngstown State University Ohio’s Best Two-Year Colleges for 2017 include: Belmont College Bowling Green State University-Firelands Central Ohio Technical College Choffin Career and Technical Center Cincinnati State Technical and Community College Clark State Community College Columbiana County Career and Technical Center Columbus State Community College Cuyahoga Community College Eastern Gateway Community College Edison State Community College Hocking College Lakeland Community College Lorain County Community College Marion Technical College North Central State College Northwest State Community College Ohio Institute of Allied Health Ohio State University Agricultural Technical Institute Owens Community College Remington College-Cleveland Campus Rhodes State College Sinclair College Southern State Community College Stark State College Terra State Community College University of Akron Wayne College Washington State Community College Zane State College About Us: LearnHowtoBecome.org was founded in 2013 to provide data and expert driven information about employment opportunities and the education needed to land the perfect career. Our materials cover a wide range of professions, industries and degree programs, and are designed for people who want to choose, change or advance their careers. We also provide helpful resources and guides that address social issues, financial aid and other special interest in higher education. Information from LearnHowtoBecome.org has proudly been featured by more than 700 educational institutions.


News Article | May 10, 2017
Site: www.eurekalert.org

What distinguishes the HLF from standard scientific conferences is the unique informal atmosphere that inspires a blend of acute scientific discussions and social interactions among the participants. Lectures, workshops and panel discussions embolden scientifically driven debate, while various social events encourage the participants to pursue their discourse outside the lecture halls and to get to know each other. Embedded once again into the program is the Hot Topic session, which is especially interesting for the media. At the 4th HLF in 2016, the focus revolved around Artificial Intelligence (AI) and a panel of experts addressed the costs and benefits created by developments brought on by AI. The theme for the session in 2017 at the 5th HLF will delve into quantum computing, more information will be available soon on the HLF homepage: heidelberg-laureate-forum.org The Heidelberg Laureate Forum Foundation offers 15 travel grants of up to 3,000 euros to enable journalists to report on this compelling networking event for the pinnacle in computer science and mathematics. Grants cover the travel costs as well as board and accommodation during the stay in Heidelberg (starting with a media get-together on the evening of September 23). Until May 31, 2017, journalists from all over the world are invited to apply, irrespective of their media affiliation (print, TV, online, radio). The applications must include the following: a short CV, three samples of work (indicating respective medium), a synopsis of publications to date (indicating respective medium), planned contributions regarding the HLF as well as a preliminary travel itinerary including estimated costs. Please send your travel grant applications to: media@heidelberg-laureate-forum.org All journalists who wish to cover the 5th HLF are requested to register using the following link: (regardless of whether or not they choose to apply for a travel grant) https:/ The Heidelberg Laureate Forum Foundation (HLFF) annually organizes the Heidelberg Laureate Forum (HLF), which is a networking event for mathematicians and computer scientists from all over the world. The 5th Heidelberg Laureate Forum will take place from September 24-29, 2017. The HLFF was established and is funded by the German foundation Klaus Tschira Stiftung (KTS), which promotes natural sciences, mathematics and computer science. The Scientific Partners of the HLFF are the Heidelberg Institute for Theoretical Studies (HITS) and Heidelberg University. The HLF is strongly supported by the award-granting institutions, the Association for Computing Machinery (ACM), the International Mathematical Union (IMU), and the Norwegian Academy of Science and Letters (DNVA).


NOXXON Pharma N.V. (Paris:ALNOX) (Alternext Paris: ALNOX), a biotechnology company whose core focus is on improving cancer treatment by targeting the tumor microenvironment, today announced the signing of an agreement with the National Center for Tumor Diseases (NCT) in Heidelberg under which the NCT will conduct a trial evaluating NOXXON’s lead product candidate NOX-A12 in combination with Keytruda® (pembrolizumab) in metastatic pancreatic and colorectal cancer. In some preclinical studies, NOX-A12 has shown an ability to make the immediate area surrounding a model tumor, the so-called tumor microenvironment, more accessible to the immune system. The ability of many tumors to use the tumor microenvironment to hide from the immune system is believed to contribute to the insensitivity of some tumors towards checkpoint inhibitors, such as Keytruda®. The NCT is a leading center for cancer research and treatment, located in Heidelberg, Germany. It was jointly founded by the German Cancer Research Center (DKFZ), Heidelberg University Hospital, Medical Faculty Heidelberg and German Cancer Aid (Deutsche Krebshilfe) in 2004 to conduct interdisciplinary research for preventing and treating cancer to ultimately benefit patients. The NCT investigators leading the clinical trial include Prof. Dr. Dirk Jäger, Managing Director, head of the clinical and tumor immunology research groups, and Dr. Niels Halama, Group Leader, both recognized leaders in clinical cancer research with significant experience in studying the tumor microenvironment in a clinical setting. Throughout his career, Prof. Dr. Jäger has focused on tumor and immunology as well as the interdisciplinary connections between both fields, both scientifically and clinically. NOXXON’s Chief Medical Officer, Dr. Jarl Ulf Jungnelius, commented: “Dr. Jäger and Dr. Halama are experts in the treatment of metastatic cancer patients as well as the tumor microenvironment. We are extremely pleased that they will be collaborating with NOXXON on this groundbreaking study.” Prof. Dr. Jäger, Managing Director of the NCT Heidelberg, commented: “This trial will enable us to explore the potential of NOX-A12 in combination with Keytruda® to benefit patients with few viable treatment options. Importantly, the trial will help us to better understand the ability of NOX-A12 to modify the tumor microenvironment and make it more accessible to the immune system to facilitate tumor destruction.” NOXXON Pharma N.V. is a clinical-stage biopharmaceutical company focused on cancer treatment. NOXXON’s goal is to significantly enhance the effectiveness of cancer treatments including immuno-oncology approaches (such as immune checkpoint inhibitors) and current standards of care (such as chemotherapy and radiotherapy). NOXXON’s Spiegelmer® platform has generated a proprietary pipeline of clinical-stage product candidates including its lead cancer drug candidate NOX-A12, which is the subject of a clinical immuno-oncology collaboration agreement with Merck & Co. / MSD (NYSE: MRK) to study NOX-A12 combined with Keytruda® (pembrolizumab) in pancreatic and colorectal cancer. NOXXON is supported by a strong group of leading international investors, including TVM Capital, Sofinnova Partners, Edmond de Rothschild Investment Partners, DEWB, NGN and Seventure. NOXXON has its statutory seat in Amsterdam, The Netherlands and its office in Berlin, Germany. Further information can be found at: www.noxxon.com About the National Center for Tumor Diseases (NCT) Heidelberg The NCT Heidelberg is a joint institution of the German Cancer Research Center, Heidelberg University Hospital and German Cancer Aid. The NCT's goal is to link promising approaches from cancer research with patient care from diagnosis to treatment, aftercare and prevention. The interdisciplinary tumor outpatient clinic is the central element of the NCT. Here the patients benefit from an individual treatment plan prepared in a timely manner in interdisciplinary expert rounds, the so-called tumor boards. Participation in clinical studies provides access to innovative therapies. The NCT thereby acts as a pioneering platform that translates novel research results from the laboratory into clinical practice. The NCT cooperates with self-help groups and supports them in their work. Since 2015, a second site for the NCT beside Heidelberg has been under development in Dresden. Certain statements in this communication contain formulations or terms referring to the future or future developments, as well as negations of such formulations or terms, or similar terminology. These are described as forward-looking statements. In addition, all information in this communication regarding planned or future results of business segments, financial indicators, developments of the financial situation or other financial or statistical data contains such forward-looking statements. The company cautions prospective investors not to rely on such forward-looking statements as certain prognoses of actual future events and developments. The company is neither responsible nor liable for updating such information, which only represents the state of affairs on the day of publication.


News Article | May 17, 2017
Site: www.eurekalert.org

A new way to characterize many-particle quantum systems has been presented in the journal "Nature" by TU Wien (Vienna) and Heidelberg University. Quantum simulators can now be used to take a deeper look at previously unanswered questions What happened right after the beginning of the universe? How can we understand the structure of quantum materials? How does the Higgs-Mechanism work? Such fundamental questions can only be answered using quantum field theories. These theories do not describe particles independently from each other; all particles are seen as a collective field, permeating the whole universe. But these theories are often hard to test in an experiment. At the Vienna Center for Quantum Science and Technology (VCQ) at TU Wien, researchers have now demonstrated how quantum field theories can be put to the test in new kinds of experiments. They have created a quantum system consisting of thousands of ultra cold atoms. By keeping them in a magnetic trap on an atom chip, this atom cloud can be used as a "quantum simulator", which yields information about a variety of different physical systems and new insights into some of the most fundamental questions of physics. Complex Quantum Systems -- More than the Sum of their Parts "Ultra cold atoms open up a door to recreate and study fundamental quantum processes in the lab", says Professor Jörg Schmiedmayer (VCQ, TU Wien). A characteristic feature of such a system is that its parts cannot be studied independently. The classical systems we know from daily experience are quite different: The trajectories of the balls on a billiard table can be studied separately -- the balls only interact when they collide. "In a highly correlated quantum system such as ours, made of thousands of particles, the complexity is so high that a description in terms of its fundamental constituents is mathematically impossible", says Thomas Schweigler, the first author of the paper. "Instead, we describe the system in terms of collective processes in which many particles take part -- similar to waves in a liquid, which are also made up of countless molecules." These collective processes can now be studied in unprecedented detail using the new methods. In high-precision measurements, it turns out that the probability of finding an individual atom is not the same at each point in space -- and there are intriguing relationships between the different probabilities. "When we have a classical gas and we measure two particles at two separate locations, this result does not influence the probability of finding a third particle at a third point in space", says Jörg Schmiedmayer. "But in quantum physics, there are subtle connections between measurements at different points in space. These correlations tell us about the fundamental laws of nature which determine the behaviour of the atom cloud on a quantum level." "The so-called correlation functions, which are used to mathematically describe these relationships, are an extremely important tool in theoretical physics to characterize quantum systems", says Professor Jürgen Berges (Institute for Theoretical Physics, Heidelberg University). But even though they have played an important part in theoretical physics for a long time, these correlations could hardly be measured in experiments. With the help of the new methods developed at TU Wien, this is now changing: "We can study correlations of different orders - up to the tenth order. This means that we can investigate the relation between simultaneous measurements at ten different points in space", Schmiedmayer explains. "For describing the quantum system, it is very important whether these higher correlations can be represented by correlations of lower order -- in this case, they can be neglected at some point -- or whether they contain new information." Using such highly correlated systems like the atom cloud in the magnetic trap, various theories can now be tested in a well-controlled environment. This allows us to gain a deep understanding of the nature of quantum correlations. This is especially important because quantum correlations play a crucial role in many, seemingly unrelated physics questions: Examples are the peculiar behaviour of the young universe right after the big bang, but also for special new materials, such as the so-called topological insulators. Important information on such physical systems can be gained by recreating similar conditions in a model system, like the atom clouds. This is the basic idea of quantum simulators: Much like computer simulations, which yield data from which we can learn something about the physical world, a quantum simulation can yield results about a different quantum system that cannot be directly accessed in the lab. Prof. Jörg Schmiedmayer Institute of Atomic and Subatomic Physics Vienna University of Technology Stadionallee 2, 1020 Wien T: +43-1-58801-141801 M: +43-664-605883888 hannes-joerg.schmiedmayer@tuwien.ac.at


Almost every scientific journal has to retract a paper once in a while. But at , when it rains, it pours. Last month, its former publisher, Springer, announced that the journal was retracting 107 papers all at once, after finding that the peer-review process had been compromised. It was the third mass retraction at , which now holds the unenviable world record for most retracted papers, according to Retraction Watch. But that’s not ’s only problem. Insider has discovered that the journal’s editorial board, as published online, contains the names of several scientists who say they have no relationship whatsoever with the journal—including German Nobel laureate Harald zur Hausen. Until a few months ago, the board’s membership list even included a researcher who passed away in 2013. is owned by the International Society of Oncology and BioMarkers (ISOBM), and was published by Springer until last year; since January, the journal has been published by California-based publisher SAGE. Its editorial board is supposed to review submissions and offer advice on editorial strategy. Springer previously retracted articles from the journal in 2015 and 2016—in both cases along with papers from other journals—because of fake peer reviews. Like many journals, Tumor Biology allows authors to suggest reviewers; in this case, the reviewers were either made up, or had the names of real scientists but false email addresses. Manuscripts sent to these fake reviewers invariably received positive reviews that helped get the paper accepted. “We are now reviewing our editorial processes across Springer to guard against this kind of manipulation of the peer review process in future,” the publisher said in an August 2015 statement. The latest retraction wave came about after an investigation prompted by the 2016 retractions, a Springer spokesperson says. Whereas many previous retractions were for articles from Iran, all the newly retracted papers appear to have originated in China. Springer says there is “some evidence” that companies specializing in manuscript editing and submission, used by some Chinese researchers to help get their papers published, played a role. “It is unclear whether the authors of the manuscripts were aware that the agencies were proposing fabricated reviewer names,” a spokesperson says. But Springer acknowledges that the journal may be partly to blame. In at least one case, the authors of a retracted article claim they didn’t use an agency and did not propose fake reviewers—which suggests the journal’s editors invited the fake review instead. The spokesperson says that may have happened because editors kept the contact information of fake reviewers in their database. She says an update to the retraction notice will clarify the issue. Meanwhile, at least five scientists listed as members of ’s editorial board now or before the takeover by SAGE in December 2016 say they have no involvement with the journal or ended their membership many years ago. ( Insider tried to contact every person listed, by email or by phone.) Zur Hausen, of the German Cancer Research Center and Heidelberg University, says he wasn’t aware he was on the list, and that to the best of his knowledge he has never even reviewed a paper for . Isaiah Fidler from the University of Texas MD Anderson Cancer Center in Houston says he has “no relationship” with the journal and has asked ’s editor-in-chief, Torgny Stigbrand of Umeå University in Sweden, to remove his name “immediately.” Donna Pauler Ankerst from the Technical University of Munich in Germany says she resigned from the board in 2013, and Abraham Fuks from McGill University in Montreal, Canada, wrote that he “had no contact with the journal or the society for at least fifteen years.” Seven members of the editorial board could not be contacted, in some cases because they no longer work at the institutes listed on the journal’s website. Manfred Rajewsky of the University of Duisburg-Essen in Germany, who was listed as a board member until the January takeover by SAGE, passed away 4 years ago. (His name is still on Springer’s archived website for .) Sixteen board members did not respond to requests from Insider; six others did but did not answer specific questions about the retractions. Stigbrand did not respond to questions either. A Springer spokesperson says responsibility for the editorial board lies with ISOBM; the society “exercises sole control of the editorial development and editorial content of the journal,” they wrote. Several current and former ISOBM board members did not respond to questions by email from Insider; the society’s homepage is currently offline. A spokesperson for SAGE says the company and ISOBM agreed in December 2016 to restructure the board, and that changes are “currently being made.” The publisher says it has overhauled the peer-review process at and that manuscripts are now sent to at least two reviewers not recommended by the authors. Springer has said it will develop tools for its remaining journals that should make the peer-review process more robust and help verify reviewers’ identities.

Loading Heidelberg University collaborators
Loading Heidelberg University collaborators