Entity

Time filter

Source Type

Steinau an der Straße, Germany

Horrix C.,German Cancer Research Center | Raviv Z.,Tel Aviv University | Flescher E.,Tel Aviv University | Voss C.,Heidelberg Pharma GmbH | Berger M.R.,German Cancer Research Center
Cellular and Molecular Life Sciences | Year: 2011

Cytotoxic ribosome-inactivating proteins (RIPs) of type II such as ricin were investigated as anti-cancer agents, but also pose a threat as biological weapons. The molecular mechanism leading to their toxic effects is, however, not yet clear. The current paradigm, which states that the irreversible depurination of 28S rRNA results in a general translational arrest eventually leading to cell death, has been questioned. Using micro-array, qRT-PCR and Western blot, we identified the unfolded protein response (UPR), a cellular mechanism activated in response to endoplasmic reticulum stress, that is induced in HCT116 and MDA-MB-231 cells exposed to the plant type II RIPs ricin, riproximin and volkensin. Apoptosis was induced by concentrations at which translation of UPR-related genes still occurred, despite concomitant ribosomal depurination. We conclude that UPR induction represents a model that better describes the cellular effects of RIP exposure at concentrations at which selected proteins are translated despite ribosomal depurination. © 2010 Springer Basel AG. Source


Anderl J.,Heidelberg Pharma GmbH | Echner H.,University of Tubingen | Faulstich H.,Max Planck Institute for Medical Research
Beilstein Journal of Organic Chemistry | Year: 2012

Phallotoxins inhibit the dynamics of microfilaments in cells and lead to apoptosis. Due to poor cellular uptake these effects cannot be studied in live cells, even at millimolar toxin concentrations, nor can phalloidin be used for the elimination of tumor cells. Uptake is greatly enhanced by conjugation of phallotoxins to either lipophilic or polycationic moieties, such as oleic acid, polylysine, or Tat-peptide. These conjugates were lethally toxic for cells, e.g., mouse fibroblasts or Jurkat leukemia cells, in the micromolar range. Uptake into cells starts with the attachment of the toxin conjugates to the plasma membrane, followed by endocytosis and, in most cases, cleavage of the toxin from the carrier. Interestingly, the internalization rate of phalloidin into cells was also significantly increased by the fluorescent moiety tetramethylrhodaminyl, as well as by high molecular weight methoxy- polyethyleneglycol, two compounds unknown so far for their uptake-mediating activity. Conjugation to carriers as investigated in this work will allow the use of phallotoxins in experimental cell biology and possibly in tumor therapy. The findings obtained with phallotoxins could be applied also to the family of amatoxins, where a-amanitin, for example, when conjugated to oleic acid was more than 100-fold more toxic for cells than the native toxin. This suggests the possibility of a more general use of the moieties examined here to enhance the uptake of hydrophilic peptides, or drugs, into live cells. © 2012 Anderl et al. Source


Patent
Heidelberg Pharma Gmbh | Date: 2011-09-29

The invention relates to tumour therapy. In one aspect, the present invention relates to conjugates of an amatoxin and a target-binding moiety, e.g. an antibody, connected by a linker comprising a urea moiety, which are useful in the treatment of cancer. In a further aspect the invention relates to pharmaceutical compositions comprising such conjugates.


Patent
Heidelberg Pharma Gmbh | Date: 2014-03-10

The invention relates to tumour therapy. In one aspect, the present invention relates to conjugates of an amatoxin and a target-binding moiety, e.g. an antibody, connected by certain linkages, which are useful in the treatment of cancer and other disorders and diseases. In a further aspect the invention relates to pharmaceutical compositions comprising such conjugates.


Patent
Heidelberg Pharma Gmbh | Date: 2012-03-09

The invention relates to tumor therapy. In one aspect, the present invention relates to conjugates of an amatoxin and a target-binding moiety, e.g. an antibody, connected by certain linkages, which are useful in the treatment of cancer. In a further aspect the invention relates to pharmaceutical compositions comprising such conjugates.

Discover hidden collaborations